Persian
in Head-Driven Phrase Structure Grammar

Stefan Müller
Freie Universität Berlin

Pollet Samvelian
Université Paris-Sorbonne & CNRS

Olivier Bonami
Université Paris-Sorbonne & CNRS

Friday 2nd November, 2012
Draft
comments welcome!
Preface
The Project

This book is part of a larger project, called CoreGram, with the goal to develop large scale computer processable grammar fragments of several languages that share a common core. Currently we work on the following languages:

- German (Müller, 2008, 2009b; Müller and Örsnes, 2011)
- Danish (Ørsnes, 2009; Müller, 2009b; Müller and Örsnes, 2011, To appear)
- Persian (Müller, 2010b; Müller and Ghayoomi, 2010; Müller, Samvelian and Bonami, In Preparation)
- Maltese (Müller, 2009a)
- Mandarin Chinese (Lipenkova, 2009; Müller and Lipenkova, 2009)
- Yiddish (Müller and Örsnes, 2011)
- English
- Spanish
- French

For the implementation we use the TRALE system (Meurers, Penn and Richter, 2002; Penn, 2004), which allows for a rather direct encoding of HPSG analyses (Melnik, 2007). The grammars of German, Danish, Persian, Maltese, and Mandarin Chinese are of non-trivial size and can be downloaded at http://hpsg.fu-berlin.de/Projects/core.html. They are also part of the version of the Grammix CD-rom (Müller, 2007a) that is distributed with this book. The grammars of Yiddish and English are toy grammars that are used to verify cross-linguistic analyses of special phenomena and the work on Spanish and French is part of work in the Sonderforschungsbereich 632 which just started. See Bildhauer, 2008 for an implemented grammar of Spanish that will be converted into the format of the grammars mentioned above.

We believe that books are the best way to document such fragments since it is often not possible to construct a coherent view of one language from journal articles. The reason is that journal articles tend to need a long time from first submission to final publication and sometimes basic assumptions may have changed during the development of the linguistic theory in the meantime. The first book in this series was Müller, 2008, which describes a fragment of German that is implemented in the grammar BerliGram. Another book on the Danish Grammar developed in the DanGram project is in preparation (Müller and Örsnes, To appear).

The situation in mainstream formal linguistics has often been criticized: basic assumptions are changed in high frequency, sometimes without sufficient motivation. Some concepts are not worked out in detail and formal underpinnings are unclear (see for instance Gazdar, Klein, Pullum and Sag, 1985, p. 6; Pullum, 1985, 1989, 1991, p. 48; Kornai and Pullum, 1990; Kuhns, 1986, p. 550; Crocker and Lewin, 1992, p. 508; Kolb
and Thiersch, 1991, p. 262; Kolb, 1997, p. 3–4; Freidin, 1997, p. 580; Veenstra, 1998, p. 25, 47; Lappin et al., 2000, p. 888; Stabler, 2010, p. 397, 399, 400; Fanselow, 2009). For a more detailed discussion of this point see Müller, 2010a, Chapter 3.7. As already mentioned, we work in the framework of HPSG, which is well-formalized (King, 1999; Pollard, 1999; Richter, 2004) and stable enough to develop larger fragments over a longer period of time. HPSG is a constraint-based theory which does not make any claims on the order of application of combinatorial processes. Theories in this framework are just statements about relations between linguistic objects or between properties of linguistic objects and hence compatible with psycholinguistic findings and processing models (Sag and Wasow, 2011).

As is argued in Müller, 2010a, Chapter 11.4, HPSG is compatible with UG-based models of language acquisition as for instance the one by Fodor (1998). See Fodor, 2001, p. 385 for an explicit remark to that end. However, in recent years evidence has accumulated that arguments for innate language specific knowledge are very weak. For instance, Johnson (2004) showed that Gold’s proof that natural languages are not identifiable in the limit by positive data alone (Gold, 1967) is irrelevant for discussions of human language acquisition. Furthermore, there is evidence that the input that humans have is sufficiently rich to acquire structures which were thought by Chomsky (1971, p. 29–33) and others to be inacquirable: Bod (2009) showed how syntactic structures could be derived from an unannotated corpus by Unsupervised Data-Oriented Parsing. He explained how Chomsky’s auxiliary inversion data can be captured even if the input does not contain the data that Chomsky claims to be necessary (see also Eisenberg, 1992 and Pullum and Scholz, 2002; Scholz and Pullum, 2002 for other Poverty of the Stimulus arguments). Input-based models of language acquisition in the spirit of Tomasello (2003) seem highly promising and in fact can explain language acquisition data better than previous UG-based models (Freudenthal et al., 2006, 2009). We argued in Müller, 2010a that the results from language acquisition reasearch in the Construction Grammar framework can be carried over to HPSG, even in its lexical variants.1 If language acquisition is input-based and language-specific innate knowledge is minimal as assumed by Chomsky (1995); Hauser, Chomsky and Fitch (2002) or non-existing, this has important consequences for the construction of linguistic theories: Proposals that assume more than 400 morpho-syntactic categories that are all innate and that play a role in all languages of the world even though they are not directly observable in many languages (Cinque and Rizzi, 2010) have to be rejected right away. Furthermore, it cannot be argued for empty functional projections in language X on the basis of overt morphems in language Y. This has been done for Topic Projections that are assumed for languages without topic morphemes on the basis of the existence of a topic morpheme in Japanese. Similarly, functional projections for object agreement have been proposed for languages like English and German on the basis of Basque data even though neither English nor German has object agreement. Since German children do not have any evidence from

1In fact we believe that a lexical treatment of argument structure is the only one that is compatible with the basic tenets of theories like Categorial Grammar (CG), Lexical Functional Grammar (LFG), CxG, and HPSG that adhere to lexical integrity (Bresnan and Mchombo, 1995). For discussion see Müller, 2006, Müller, 2010a, Chapter 11.11, Müller, 2010b, and Müller, Submitted.
Basque, they would not be able to acquire that there are projections for object agreement and hence this fact would have to be known in advance. Since there is no theory external evidence for such projections, theories that can do without such projections and without stipulations about UG should be preferred. However, this does not mean that the search for universals or for similarities between languages and language classes is fundamentally misguided, although it may be possible that there is very little that is truly universal (Evans and Levinson, 2009): In principle there exist infinitely many descriptions of a particular language. We can write a grammar that is descriptively adequate, but the way the grammar is written does not extend to other languages. So even without making broad claims about all languages it is useful to look at several languages and the more they differ from each other the better it is. What we try to do here in this book and in the CoreGram project in general is the modest version of main stream generative grammar: We start with grammars of individual languages and generalize from there. We think that the framework we are using is well-suited for capturing generalizations within a language and across languages, since inheritance hierarchies are ideal tools for this (see Section 2.6). Of course when building grammars we can rely on several decades of research in theoretical linguistics and build on insights that were found by researchers working under UG-oriented assumptions. Without a theory-driven comparative look at language certain questions never would have been asked and it is good that we have such valuable resources at hand although we see some developments rather critical as should be clear from the statements we made above.

Returning to formalization of linguistic theories, the same criticism that applies to GB/Minimalism applies to Construction Grammar: The basic notions and key concepts are hardly ever made explicit with the exception of Sign-Based Construction Grammar (Sag, 2010, To appear), which is an HPSG-variant, Embodied Construction Grammar (Bergen and Chang, 2005), which uses feature value matrices and is translatable into HPSG (see Müller, 2010a, Chapter 9.6 for the discussion of both theories), and Fluid Construction Grammar (Steels, 2011). Müller (2010a, Chapter 3.6.4; Submitted) showed that the combinatory operations of Minimalism as defined in Chomsky, 2008 and Stabler, 2001 corresponds to three of the schemata used in HPSG grammars since at least Pollard and Sag, 1994: Merge corresponds the HeadSpecifier Schema and the Head-Complement Schema of HPSG and Move corresponds to the Head-Filler Schema. So HPSG can be said to provide an explicit formalization of Minimalist ideas. HPSG differs from Minimalism in important respects though: It is constraint-based rather than generative-enumerative. The implications of this cannot be discussed in full detail here, but the interested reader is referred to Pullum and Scholz, 2001 and Müller, 2010a, Chapter 11.2. In addition we agree with Jackendoff (2008, 2011), Jacobs (2008), Sag (2010), and others that Move and Merge are not sufficient to deal with language in its full richness in non-stipulative ways. Hence we believe that additional schemata or phrasal constructions in the sense of CxG or Simpler Syntax (Culicover and Jackendoff, 2005) are needed. To what extent phrasal constructions are needed and where Merge-like combinations together with a rich lexicon are sufficient or rather necessary is an empirical issue and the present book tries to contribute to this discussion.
The Data

Acknowledgments

We thank Adele Goldberg for discussion.

We thank Mina Esmaili, Yasser Shakeri, and Mehran A. Taghvaipour for for comments on the journal article that was the basis for the Chapter on Complex Predicates. In addition we want to thank Elham Alae for discussion of data and Daniel Hole and Jacob Maché for comments on that paper. We thank Emily M. Bender and Felix Bildhauer for discussion. Special thanks go to Bob Borsley, Karine Megerdoomian, Ivan Sag, and several anonymous reviewers, whose comments on earlier versions of the paper improved it considerably.

Research related to this paper was presented at the HPSG conference 2006 in Varna, at the Institut für Linguistik in Leipzig, at the Institut für Linguistik in Potsdam, at the Centrum für Informations- und Sprachverarbeitung in Munich, at the center for Computational Linguistics of the Universität des Saarlandes, Saarbrücken, in 2008 at the conference Complex Predicates in Iranian Languages at the Université Sorbonne Nouvelle in Paris, and in 2008 at the conference Syntax of the World’s Languages at the Freie Universität Berlin. We thank the respective institutions and the organizers of the HPSG conference for the invitation and all audiences for discussion.

We wish to thank the participants of the HPSG seminar at Paris Diderot University, as well as the anonymous reviewers and participants of the 2010 HPSG conference. Special thanks go to Olivier Bonami, Philip Miller, François Mouret, and Gert Wehelhuth. This work is supported by the bilateral project “PerGram”, with funding from the ANR (France) and the DGfS (Germany) [grant no. MU 2822/3-I].

This book is typeset with \LaTeX with the bidi package by Vafa Khalighi. We thank the developers of both \LaTeX and XeLaTeX for their work and the members of the German Language TeX Users Group Communication List and those replying at http://tex.stackexchange.com for many useful hints and suggestions. Special thanks go to Mostafa Nouri for his help with the Persian script. He even was so kind to offer setting up a virtual machine with all the components for type setting Persian installed!

Berlin and Paris, Friday 2nd November, 2012 Stefan Müller, Pollet Samvelian and Olivier Bonami

Draft of Friday 2nd November, 2012, 21:32
A Note on the Way this Book is Published

This book is available for download at http://hpsg.fu-berlin.de/~stefan/Pub/persian.html. We hope to publish it as part of the Open Access series *Implemented Grammars* that is currently established as part of a larger Open Access initiative for publishing linguistic books (OALI). The final approval of the series concept and series editors is still pending but we hope that the process of self organization of the Open Access initiative will be finished by the end of the year.

The interested reader will find more information about OALI on its web page at http://hpsg.fu-berlin.de/OALI/ and some further background in my *Personal Note on Open Access in Linguistics* (Müller, To Appear).

Berlin, Friday 2nd November, 2012

Stefan Müller
Contents

1. Persian Grammar in Perspective .. 1
 1.1. The situation of Persian within the Iranian domain 1
 1.1.1. Persian, iranian languages, and Indo-European 1
 1.1.2. An outline of the history of Persian grammar 1
 1.2. Persian grammar and general linguistics 1
 1.2.1. Typological issues ... 1
 1.2.2. Theoretical issues ... 1
 1.3. Characterizing Standard Contemporary Persian 2
 1.3.1. Persian outside Iran .. 2
 1.3.2. Persian among the languages of Iran 2
 1.3.3. Iranian Persian varieties: sociolinguistic, geographic and historical variation .. 2
 1.3.4. Standard Contemporary Persian 2
 1.3.5. Spelling and Transliteration 2
2. A Brief Introduction to HPSG ... 3
 2.1. Formal Foundations .. 3
 2.2. Valence and Constituent Order 6
 2.2.1. Valence ... 6
 2.2.2. Constituent Structure .. 7
 2.2.3. Constituent Order .. 9
 2.2.4. Free Constituent Order Languages 9
 2.2.5. Heads and Projection of Head Features 11
 2.3. Non-Cancellation of Valence Requirements 11
 2.4. Semantics .. 11
 2.4.1. Minimal Recursion Semantics 12
 2.4.2. The Analysis of Non-Compositional Constructions 15
 2.4.3. Decomposition in Syntax vs. Underspecification 17
 2.5. Lexical Rules .. 18
 2.6. Generalizations .. 20
3. Basic Persian Grammar ... 23
 3.1. The Phenomena .. 23
 3.1.1. Part of Speech ... 23
 3.1.2. Grammatical Functions 25
 3.1.3. Clause Types ... 25
 3.1.4. Basic Word Order and Scrambling 27
 3.2. The Analysis ... 27
3.3. Alternatives .. 27

4. The Nominal Phrase ... 29
 4.1. The Phenomena .. 29
 4.1.1. Determiners ... 29
 4.1.2. Ezafe Construction 29
 4.1.3. Classifiers .. 29
 4.2. The Analysis .. 29
 4.3. Alternatives .. 29

5. Complex Predicates .. 31
 5.1. The phenomenon .. 31
 5.1.1. Word-like properties 32
 5.1.2. Phrase-like properties 38
 5.1.3. Active/Inchoative Alternations of Complex Predicates . 41
 5.1.4. Scope of Modals 41
 5.2. The Analysis .. 41
 5.2.1. Basic assumptions 42
 5.2.2. The Lexical Representation of Verbs in Non-Compositional Cases . 45
 5.2.3. Simple forms ... 46
 5.2.4. Future forms .. 47
 5.2.5. Imperfective prefix and negation 50
 5.2.6. Direct object clitics 51
 5.2.7. Compositional complex predicates 54
 5.2.8. Nominalizations 56
 5.2.9. Summary ... 59
 5.3. Alternatives .. 59
 5.3.1. Inheritance-based classification of phrasal patterns . 59
 5.3.2. Radically Compositional Accounts 72

6. Verbal Inflection and Valence Alternations 73
 6.1. The Phenomena .. 73
 6.1.1. Inflection and Agreement 73
 6.1.2. Copula .. 73
 6.1.3. Passives with šodan 73
 6.1.4. Dative Shift .. 74
 6.1.5. Pro Drop .. 74
 6.2. The Analysis .. 74
 6.3. Clitic forms of budan 74
 6.4. Alternatives .. 74

7. Control and No Raising 75
 7.1. The Phenomena .. 75
 7.2. The Analysis .. 75
7.3. Alternatives .. 75

8. Clitics ... 77
 8.1. The Phenomenon ... 77
 8.1.1. Introduction and data 77
 8.1.2. Arguments for affixal status 80
 8.2. The Analysis ... 85
 8.2.1. Morphophonological functions 85
 8.2.2. Suffix appearing on the verb 86
 8.2.3. Suffix appearing on a non-verbal host 87

9. Nonlocal Dependencies and Relative Clauses 89
 9.1. The Phenomena ... 89
 9.1.1. Nonlocal Dependencies 89
 9.1.2. Clitic Left Dislocation 91
 9.1.3. Resumptive Pronouns 91
 9.1.4. Relative Clauses 92
 9.1.5. Resumptive Pronouns in Relative Clauses 93
 9.1.6. Free Relative Clauses 94
 9.2. The Analysis ... 95
 9.3. Alternatives .. 98
 9.4. Open Questions ... 98
 9.5. Alternatives .. 98

10. Various Interesting Things that May be Integrated Somewhere Else 99

A. List of Phrases Covered/Rejected by the Grammar 101

Bibliography .. 129
2. A Brief Introduction to Head-Driven Phrase Structure Grammar

Head-Driven Phrase Structure Grammar (HPSG) was developed by Ivan Sag and Carl Pollard in the mid 80s. The main publications are Pollard and Sag, 1987, 1994. International conferences have been held since 1994 and there is a rich collection of publications regarding analyses of linguistic phenomena (in the area of phonology, morphology, syntax, semantics, and information structure), formal foundations of the framework, and computational issues like efficient parsing and generation. See http://hpsg.fu-berlin.de/HPSG-Bib/ for bibliographic data.

Since HPSG analyses are usually sufficiently formalized they can and have been implemented as computer processable grammars. This makes it possible to check the interactions of analyses with other phenomena and to use the linguistic knowledge in practical applications. See Bender et al., In Preparation for further details.

2.1. Formal Foundations

HPSG assumes feature structures as models of linguistic objects. Feature structures consist of feature value pairs. The values can be atomic or feature structures. Every feature structure is of a certain type. Types are ordered in hierarchies with the most general type at the top of the hierarchy and the most specific types at the bottom. Figure 2.1 shows an example hierarchy for the type case and its subtypes.

\[
\begin{array}{c}
\text{case} \\
\text{nom} \quad \text{gen} \quad \text{dat} \quad \text{acc}
\end{array}
\]

Figure 2.1.: Subtypes of case in a grammar of German

A model of a linguistic object are maximally specific, that is, a noun or an attributive adjective in a model of an actual utterance has a case value that is nom, gen, dat, or acc. The linguist develops theories that describe possible feature structures. In contrast to feature structures, feature descriptions can be partial. For instance it is not necessary to specify a case value for the German word Frau (‘woman’) since Frau can be used in NPs of all four cases. (1) shows a simplified description of the nominal agreement information for the German noun Frau (‘woman’) (see Kathol, 1999 for details and Wechsler and Zlatić, 2003 for a comprehensive overview of agreement in HPSG). Frau has feminine gender, is compatible with all four cases, and is singular. The AVM has the type nom-agr. Types are written in italics. nom-agr is a complex type which introduces the features GEN, CASE, and NUM. fem, case, sg are also types, but they are atomic.
fem and sg are maximally specific, since they do not have subtypes, but case does have subtypes.

\[
\begin{array}{c}
\text{GEN fem} \\
\text{CASE case} \\
\text{NUM sg} \\
\text{nom-agr}
\end{array}
\]

(1)

One very important part of the formalism is structure sharing. It is used to express that information in feature structures is identical. Structure sharing is indicated by boxed numbers in feature descriptions. An identical number at several places in an AVM expresses the fact that the respective values are identical.

To give an example of structure sharing, the agreement information of a noun in German has to be compatible with the agreement information of the adjective and the determiner. This compatibility is established by identifying a part of the structure that represents a noun with parts of the structure for the adjective and the determiner in an NP. In an analysis of (2), the definite article has to be compatible with the description in (1).

(2) die Frau
the woman

die is ambiguous between feminine singular nominative/accusative and plural nominative/accusative.

\[
\begin{array}{c}
\text{GEN fem} \\
\text{CASE nom} \lor \text{acc} \\
\text{NUM sg} \\
\text{nom-agr}
\end{array} \lor \begin{array}{c}
\text{CASE nom} \lor \text{acc} \\
\text{NUM pl} \\
\text{nom-agr}
\end{array}
\]

(3)

Since Frau is singular, only feminine singular nominative/accusative is compatible with this noun. The result of identifying the feature bundles of die and Frau therefore is (4):

\[
\begin{array}{c}
\text{GEN fem} \\
\text{CASE nom} \lor \text{acc} \\
\text{NUM sg} \\
\text{nom-agr}
\end{array}
\]

(4)

While structure sharing is the most important expressive means in HPSG there is one extension of the basic formalism that plays a crucial role in most HPSG analyses: relational constraints. Relational constraints are used to relate several values in a feature structure to each other. The relational constraint that is used most often in HPSG is append (‘\(+\)’). append is used to concatenate two lists. Schema 1, which will be discussed in Section 2.2.2, is an example for an application of such a constraint.

This brief sketch basically described all the formal tools that are used in HPSG. Of course a lot more could be and has been said about the properties of the formalisms, but
this introductionary section is not the place to discuss these issues in detail. However, it cannot be emphasized enough that it is important that the formal details are worked out and the interested reader is referred to the work of Shieber (1986), Pollard and Sag (1987, Chapter 2), Johnson (1988), Carpenter (1992), King (1994, 1999), Pollard (1999) and Richter (2004). The work of King, Pollard, and Richter reflects current assumptions, that is, the model theoretic view on grammar that is assumed nowadays.

Before I start to discuss several phenomena and their analyses in HPSG in the following sections I want to give an overview of the general feature geometry as it was developed in Pollard and Sag, 1994. (5) shows parts of the lexical item for \textit{Frau} (‘woman’).

$$
\begin{array}{l}
\text{PHONOLGY} \langle \text{frau} \rangle \\
\text{SYNTAX-SEMANTICS} \\
\text{LOCAL} \\
\text{CATEGORY} \\
\text{HEAD} \\
\text{AGR} \, [\text{GEN fem, case, num sg, nom-agr}] \\
\text{SPR} \, [\text{DET[AGR }]] \\
\text{CONTENT} \\
\text{INST} \, X \, [\text{frau}] \\
\text{NONLOCAL} \, \ldots \\
\text{syntsem} \\
\text{WORD} \\
\end{array}
$$

The first feature value pair describes the phonological form of the word. The value of PHON is a list of phonemes. For reasons of readability usually the orthographic form is given in HPSG papers and phonological structure is omitted, but see Bird and Klein, 1994 and Höhle, 1999 for analyses. The second feature is SYNTAX-SEMANTICS (SYNSEM) and its value is a description of all properties of a linguistic object that are syntactically and semantically relevant and can be selected by other heads. Information that is locally relevant (LOCAL) is distinguished from information that plays a role in non-local dependencies (NONLOCAL, see Section ??). Syntactic information is represented under CATEGORY (CAT) and semantic information under CONTENT (CONT). The example shows the HEAD value, which provides information about all aspects that are relevant for the external distribution of a maximal projection of a lexical head. In particular the part of speech information (noun) is represented under HEAD. The value of AGREEMENT (AGR) is the one given in (1). As well as information regarding the head features, valence information also belongs under CAT. The example shows the SPR feature, which is used for the selection of a specifier (see the next section for details on valence). The \Box is an example of structure sharing. It ensures that the specifier that is realized together with the noun has compatible agreement features.
2. A Brief Introduction to HPSG

2.2. Valence and Constituent Order

2.2.1. Valence

Descriptions of lexical elements contain a list with descriptions of the syntactic and semantic properties of their arguments. This list is called Argument Structure (ARGST). (6) gives some prototypical examples for ARGST values.

\[(6) \quad \begin{array}{llll}
\text{Verb} & \text{ARG-ST} & \text{SPR} & \text{COMPS} \\
\text{sleeps} & \langle \text{NP}[\text{nom}] \rangle & \langle \text{NP}[\text{nom}] \rangle & \langle \rangle \\
\text{likes} & \langle \text{NP}[\text{nom}], \text{NP}[\text{acc}] \rangle & \langle \text{NP}[\text{nom}] \rangle & \langle \text{NP}[\text{acc}] \rangle \\
\text{talks} & \langle \text{NP}[\text{nom}], \text{PP}[\text{about}] \rangle & \langle \text{NP}[\text{nom}] \rangle & \langle \text{PP}[\text{about}] \rangle \\
\text{gives} & \langle \text{NP}[\text{nom}], \text{NP}[\text{acc}], \text{NP}[\text{acc}] \rangle & \langle \text{NP}[\text{nom}] \rangle & \langle \text{NP}[\text{acc}], \text{NP}[\text{acc}] \rangle \\
\end{array} \]

In (6) items like NP[\text{nom}] are abbreviations that stand for feature descriptions. The elements in the ARG-ST list are ordered according to the obliqueness hierarchy suggested by Keenan and Comrie (1977) and Pullum (1977).

\[
\begin{align*}
\text{SUBJECT} & \Rightarrow \text{DIRECT} \Rightarrow \text{INDIRECT} \Rightarrow \text{OBLIQUES} \Rightarrow \text{GENITIVES} \Rightarrow \text{OBJECTS OF} \\
\text{OBJECT} & \quad \text{OBJECT} \\
\text{COMPARISON}
\end{align*}
\]

In grammars of configurational languages like English, the ARG-ST list is mapped onto two valence features: SPR and COMPS. Examples for the respective values are also given in (6).

The HPSG representation of valence is reminiscent of Categorial Grammar (Ajdukiewicz, 1935; Steedman, 2000) where each head comes with a description of its arguments. Figure 2.2 shows the saturation of the specifier valence: A head that requires a specifier can be combined with a subject that matches the description in the SPR list. The \[\square\] indicates that the properties of the subject NP and its description in the SPR list are identified. Therefore accusative NPs like him are excluded as a subject of sleeps. The

\[
\begin{align*}
V[\text{SPR} \langle \rangle], \\
\text{COMPS} & \langle \rangle \\
\square \text{NP}[\text{nom}] & V[\text{SPR} \langle \square \rangle], \\
\text{COMPS} & \langle \rangle \\
\text{Peter} & \text{sleeps}
\end{align*}
\]

Figure 2.2.: Analysis for Peter sleeps.

elements in valence lists are canceled off once the combination with an appropriate item has taken place, that is the SPR list of Peter sleeps is empty since the SPR element of

Draft of Friday 2nd November, 2012, 21:32
sleeps is realized as a sister of sleeps. Figure 2.3 shows a more complex example with a transitive verb.

\[
\begin{array}{c}
V[\text{spr } \langle \rangle], \\
\text{comps } \langle \rangle \\
\end{array}
\]

\[
\begin{array}{c}
\text{NP[nom]} \\
V[\text{spr } \langle \rangle], \\
\text{comps } \langle \rangle \\
\end{array}
\]

\[
\begin{array}{c}
V[\text{spr } \langle \rangle], \\
\text{comps } \langle \rangle \\
\end{array}
\]

\[
\begin{array}{c}
\text{NP[acc]} \\
\end{array}
\]

Kim likes Sandy

Figure 2.3.: Analysis for *Kim likes Sandy.*

list) and this VP is combined with its subject to form a fully saturated verbal projection, that is, a clause.

2.2.2. Constituent Structure

As was explained in Section 2.1, HPSG exclusively uses feature structures with structure sharing and relational constraints for modeling linguistic objects. As a consequence of this the theory does not use phrase structure rules. Instead the dominance relation between linguistic objects is modeled with feature structures. Trees are used for visualization purposes only. The attribute value matrice that represents the dominance relations in the tree in Figure 2.4 is shown in (7).

\[
\begin{array}{c}
\text{NP} \\
\text{Det N} \\
\text{the man} \\
\end{array}
\]

Figure 2.4.: *the man*

(7)

\[
\begin{bmatrix}
\text{PHON } \langle \text{the man} \rangle \\
\text{HEAD-DTR} \\
\text{NON-HEAD-DTRS } \langle \text{PHON } \langle \text{man} \rangle \rangle \\
\end{bmatrix}
\]

Draft of Friday 2nd November, 2012, 21:32
For explanatory purposes (7) shows the phonological information only. Part of speech information and valence information that is contained in the tree in Figure 2.4 is omitted. The value of PHON gives a list of phonological contributions of the daughter signs. The feature HEAD-DTR is appropriate for headed structures. Its value is the sign that contains the head of a complex expression (the verb in a VP, the VP in a clause). The value of NON-HEAD-DTRS is a list of all other daughters of a sign.

The following implication shows the constraints that hold for structures of type head-complement-phrase:

Schema 1 (Head-Complement-Schema (fixed order))

\[
\text{head-complement-phrase} \Rightarrow \\
\begin{array}{c}
\text{SYNSEM}\langle\text{LOC}\rangle\langle\text{CAT}\rangle\langle\text{COMPS}\rangle
\\
\text{HEAD-DTR}\langle\text{SYNSEM}\rangle\langle\text{LOC}\rangle\langle\text{CAT}\rangle\langle\text{COMPS}\rangle\langle\text{\{\text{SYNSEM} }\rangle\langle\text{\{\text{SYNSEM} }\rangle
\\
\text{NON-HEAD-DTRS} \langle\rangle
\end{array}
\]

This constraint splits the COMPS list of the head daughter into two parts: a list that contains exactly one element (\(\langle\text{\{\text{SYNSEM} }\rangle\langle\text{\{\text{SYNSEM} }\rangle\)) and a remaining list (\(\langle\rangle\)). The first element of the COMPS list is identified with the SYNSEM value of the non-head daughter. It is therefore ensured that the description of the properties of the complement of a transitive verb like "likes" in Figure 2.3 is identified with the feature value bundle that corresponds to the properties of the object that is combined with the head (Sandy in the case of Figure 2.3). Since Schema 1 licenses structures with exactly one head daughter and exactly one non-head daughter, structures will be binary. This is not the only option for defining head complement structures. The constraints can be specified in a way that allows for the realization of any number of complements in one go. See for instance Pollard and Sag, 1994 for an analysis of English with a flat VP and Bouma and van Noord (1998) for an absolutely flat analysis of Dutch, including a flat verbal complex.

The Schema 1 licenses the VP in Figure 2.3. The combination of the VP and its specifier is licenced by the HeadSpecifier-Schema:¹

Schema 2 (Specifier-Head-Schema)

\[
\text{specifier-head-phrase} \Rightarrow \\
\begin{array}{c}
\text{SYNSEM}\langle\text{LOC}\rangle\langle\text{CAT}\rangle\langle\text{SPR}\rangle
\\
\text{HEAD-DTR}\langle\text{SYNSEM}\rangle\langle\text{LOC}\rangle\langle\text{CAT}\rangle\langle\text{SPR}\rangle\langle\text{\{\text{SYNSEM} }\rangle\langle\text{\{\text{SYNSEM} }\rangle
\\
\text{NON-HEAD-DTRS} \langle\rangle
\end{array}
\]

This schema also licences the combination of nominal projections with a determiner.

¹Note that the non-head daughter is taken from the end of the SPR list, while the non-head daughter in head-complement phrases is taken from the beginning. For heads that have exactly one specifier this difference is irrelevant, but in the analysis of object shift and negation shift that is suggested by Müller and Orsnes (To appear), the authors assume multiple specifiers and the difference in order of combination will be relevant.
2.2.3. Constituent Order

In the simple NP example above the order of the elements is fixed: the head follows the non-head. However this is not always the case. For instance there are mixed languages like Persian that allow some heads to the left of their arguments and some heads to the right (Prepositional phrases are head initial and verb phrases are head final in Persian). For such reasons HPSG assumes a separation between immediate dominance (ID) constraints and linear precedence (LP) constraints as was common in GPSG (Gazdar et al., 1985). For instance, Schema 1 does not impose any order on the head and the non-head. This is taken care of by a set of separate constraints.

Heads that precede their complements can be marked as initial+ and those which follow their complements as initial−. The following LP constraints ensure the right ordering of heads with respect to their complements:

\[(8) \begin{align*}
&\text{a. HEAD [initial+] < COMPLEMENT} \\
&\text{b. COMPLEMENT < HEAD [initial−]}
\end{align*}\]

2.2.4. Free Constituent Order Languages

Schema 1 allows for the combination of a head with its complements in a fixed order (similar to what is known from Categorial Grammar). Taken together with the linearization constraint in (8a), this results in a fixed constituent order in which the verb precedes its complements and the complements are serialized according to their obliqueness. However there are languages with much freer constituent order than English. If one does not want to assume a base order from which other orders are derived by movement or equivalents to movement one has to find ways to relax the constraint on head complement structures. One way of doing this is to allow the non-head daughter to be an arbitrary element from the COMPS list of the head daughter. The respective modification of the schema is given as Schema 3:

Schema 3 (Head-Complement-Schema (free constituent order))

\[\begin{align*}
\text{head-complement-phrase} &\Rightarrow \\
[\text{SYNSEM|LOC|CAT|COMPS} &\oplus 3] \\
[\text{HEAD-DTR|SYNSEM|LOC|CAT|COMPS} &\oplus (2) &\oplus 3] \\
[\text{NON-HEAD-DTR}\langle 3\rangle](\text{SYNSEM} 2) \\
\end{align*}\]

The COMPS list of the head daughter is split into three parts: a list of arbitrary length (1), a list containing one element (⟨ 2 ⟩) and another list of arbitrary length (3). 1 and 3 can be the empty list or contain one or more arguments.

For non-configurational languages it is assumed that the subject of finite verbs is treated like the other arguments, that is, it is mapped to COMPS instead of being mapped to SPR as in English. Having explained the difference in the HPSG analysis of configurational and non-configurational languages we can now give an example of an analysis of a language with rather free constituent order: Figures 2.5 and 2.6 show the analysis of the German sentences in (9):
(9) a. [weil] jeder das Buch kennt
because everybody the book knows
‘because everybody knows the book’
b. [weil] das Buch jeder kennt
because the book everybody knows

![Diagram of sentence structure]

Figure 2.5.: Analysis of *jeder das Buch kennt* (everybody the book knows)

![Diagram of sentence structure]

Figure 2.6.: Analysis of *das Buch jeder kennt* (the book everybody knows)

In Figure 2.5 the object is combined with the verb first and the subject is represented in the COMPS list of the mother and in Figure 2.6 the subject is combined with the verb first and the object is represented in the COMPS list of the mother. As far as constituent ordering is concerned, this analysis is equivalent to proposals that assume a set for the representation of valence information. Any element from the set can be combined with...
2.3. Non-Cancellation of Valence Requirements

its head. Such analyses were suggested very early in the history of HPSG by Gunji (1986) for Japanese. See also Hinrichs and Nakazawa (1989), Pollard (1996), and Engelkamp, Erbach and Uszkoreit (1992) for set-based approaches to constituent order in German.

A crucial difference between a set-based analysis and the list-based analysis advocated here is that the elements of the lists are ordered in order of obliqueness. This order is used in various subparts of the theory for instance for assignment of structural case and for expressing constraints on pronoun binding. So the obliqueness ordering has to be represented elsewhere in set-based approaches.

For authors who assume binary branching structures the difference between languages with fixed constituent order and languages with free constituent order lies in the value of \square and \bullet in Schema 3. If either \square or \bullet is the empty list one gets a fixed constituent order, with head complement combination either in order of obliqueness or in the reverse order of obliqueness.

To sum up, there are three approaches to free constituent order: Flat structures, linearization domains with discontinuous constituents, and the non-cancellation of syntactic and semantic properties of arguments.

2.2.5. Heads and Projection of Head Features

Section 2.1 introduced head features and Figure 2.3 shows that the information about part of speech of the head is present at every projection, but until now nothing has been said about head feature propagation. The identity of the head features of a head and of a mother node is taken care of by the following principle:

Principle 1 (Head Feature Principle) *In a headed phrase, the head value of the mother and the head value of the head daughter are identical.*

This can be formalized by the following implicational constraint:

\[(10) \quad \text{headed-phrase} \Rightarrow \begin{array}{c}
\text{SYNSEM}\{\text{LOCAL}|\text{CAT}|\text{HEAD}\ \square \\
\text{HEAD-DTR}\{\text{SYNSEM}|\text{LOCAL}|\text{CAT}|\text{HEAD}\ \bullet
\end{array}\]

The head daughter is the daughter that contains the syntactic head, that is, in the phrase *likes Sandy* in Figure 2.3 it is the lexical item *likes* and in the phrase *Kim likes Sandy* it is the constituent *likes Sandy*. The constraint is a constraint on structures of type *headed-phrase*. Types like *head-complement-phrase* and *head-specifier-phrase* are subtypes of *headed-phrase* and hence the constraint in (10) applies to them too.

2.3. Non-Cancellation of Valence Requirements

2.4. Semantics

The first publications on HPSG assumed Situation Semantics (Barwise and Perry, 1983) as the underlying semantic framework (Pollard and Sag, 1987, 1994). While there are
2. A Brief Introduction to HPSG

also more recent publications in this tradition (Ginzburg and Sag, 2000), many current analyses use semantic formalisms that allow for the underspecification of scope constraints such as for instance Minimal Recursion Semantics (MRS, Copestake, Flickinger, Pollard and Sag, 2005) and Lexical Resource Semantics (LRS, Richter and Sailer, 2004).

2.4.1. Minimal Recursion Semantics

(11) shows the examples for the semantic contribution of a noun and a verb in Minimal Recursion Semantics (MRS):

\[\text{(11)}\]

a. \textit{dog}
\[\begin{array}{c}
\text{IND} \quad \text{PER} \quad 3 \\
\text{RELs} \quad \text{INST} \quad \text{dog} \\
\text{mrs}
\end{array}\]

b. \textit{chases}
\[\begin{array}{c}
\text{IND} \quad \text{EVENT} \\
\text{RELs} \quad \text{AGENT} \quad \text{PATIENT} \\
\text{mrs}
\end{array}\]

An MRS consists of an index, a list of relations, and a set of handle constraints, which will be introduced below. The index can be a referential index of a noun (11a) or an event variable (11b). In the examples above the lexical items contribute the \textit{dog}' relation and the \textit{chase}' relation. The relations can be modeled with feature structures by turning the semantic roles into features. The semantic index of nouns is basically a variable, but it comes with an annotation of person, number, and gender since this information is important for establishing correct pronoun bindings.

The arguments of each semantic relation (e.g. agent, patient) are linked to their syntactic realization (e.g. NP[nom], NP[acc]) in the lexicon. (12) shows an example. NP[nom] stands for a description of an NP with the semantic index identified with \textbullet. The semantic indices of the arguments are structure shared with the arguments of the semantic relation \textit{chase}'.

\[\text{(12)}\]

\[\begin{array}{c}
\text{CAT} \\
\text{ARG-ST} \quad \text{NP}[\text{nom}] \quad \text{NP}[\text{acc}] \\
\text{IND} \quad \text{EVENT} \\
\text{RELs} \quad \text{AGENT} \quad \text{PATIENT} \\
\text{CONT} \\
\text{mrs}
\end{array}\]
Generalizations over linking patterns can be captured elegantly in inheritance hierarchies (see Section 2.6 on inheritance hierarchies and Davis, 1996; Wechsler, 1991; Davis and Koenig, 2000 for further details on linking in HPSG).

Before turning to the compositional analysis of (13a), I want to introduce some additional machinery that is needed for the underspecified representation of the two readings in (13b,c).

(13) a. Every dog chased some cat.
 b. \(\forall x (\text{dog}(x) \rightarrow \exists y (\text{cat}(y) \land \text{chase}(x, y))) \)
 c. \(\exists y (\text{cat}(y) \land \forall x (\text{dog}(x) \rightarrow \text{chase}(x, y))) \)

Minimal Recursion Semantics assumes that every elementary predication comes with a label. Quantifiers are represented as three place relations that relate a variable and two so-called handles. The handles point to the restriction and the body of the quantifier, that is, to two labels of other relations. (14) shows a (simplified) MRS representation for (13a).

\[
(14) \quad (h0, \{h1: \text{every}(x, h2, h3), h2: \text{dog}(x), h4: \text{chase}(e, x, y), h5: \text{some}(y, h6, h7), h6: \text{cat}(y) \})
\]

The tree-place representation is a syntactic convention. Formulae like those in (13) are equivalent to the results of the scope resolution process that is described below.

The MRS in (14) can best be depicted as in Figure 2.8. h0 stands for the top element. This is a handle that dominates all other handles in a dominance graph. The restriction of every points to dog and the restriction of some points to cat. The interesting thing is that the body of every and some is not fixed in (14). This is indicated by the dashed lines in Figure 2.8 in contrast to the straight lines connecting the restrictions of the quantifiers with elementary predications for dog and cat, respectively. There are two ways to plug an elementary predication into the open slots of the quantifiers:
2. A Brief Introduction to HPSG

Figure 2.8.: Dominance graph for *Every dog chases some cat.*

(15) a. Solution one: $h_0 = h_1$ and $h_3 = h_5$ and $h_7 = h_4$.
 (*every dog* has wide scope)

b. Solution two: $h_0 = h_5$ and $h_7 = h_1$ and $h_3 = h_4$.
 (*some cat* has wide scope)

The solutions are depicted as Figure 2.9 and Figure 2.10.

There are scope interactions that are more complicated than those we have been looking at so far. In order to be able to underspecify the two readings of (16) both slots of a quantifier have to stay open.

(16) a. Every nephew of some famous politician runs.

b. every(x, some(y, famous(y) politician(y), nephew(x, y)), run(x))

c. some(y, famous(y) politician(y), every(x, nephew(x, y), run(x)))

Draft of Friday 2nd November, 2012, 21:32
In the analysis of example (13a), the handle of *dog* was identified with the restriction of the quantifier. This would not work for (16a) since either *some* or *nephew* can be the restriction of *every*. Instead of direct specification so-called handle constraints are used (*qeq* or *der* = *q*). A *qeq* constraint relates an argument handle and a label: h =ₚ l means that the handle is filled by the label directly or one or more quantifiers are inserted between h and l. Taking this into account, we can now return to our original example. The correct MRS representation of (13a) is given in (17).

\[
(17) \quad (h_0, \{ h_1:every(x, h_2, h_3), h_4:dog(x), h_5:chase(e, x, y), h_6:some(y, h_7, h_8), h_9:cat(y) \}, \{ h_2 =ₚ h_4, h_7 =ₚ h_9 \})
\]

The handle constraints are associated with the lexical entries for the respective quantifiers. Figure 2.11 shows the analysis. For compositional cases as in Figure 2.11, the RELS value of a sign is simply the concatenation of the RELS values of the daughters. Similarly the HCONS value is a concatenation of the HCONS values of the daughters.

2.4.2. The Analysis of Non-Compositional Constructions

Copestake, Flickinger, Pollard and Sag, 2005 extended the basic analysis that concatenates RELS and HCONS to cases in which the meaning of an expression is more than the meaning that is contributed by the daughters in a certain structure. They use the feature *c-cont* for the representation of constructional content. While usually the semantic functor (the head in head argument combinations and the adjunct in head adjunct structures) determines the main semantic contribution of a phrase, the *c-cont* feature can be used to specify a new main semantic contribution. In addition relations and scope constraints may be introduced via *c-cont*. The feature geometry for *c-cont* is given in (18):
Figure 2.11.: Analysis for Every dog chases a cat.

\[
\begin{array}{l}
\text{HOO\textsc{k}}
\end{array}
\]

The \textsc{hook} provides the local top for the complete structure and a semantic index, that is a nominal index or an event variable. In compositional structures the \textsc{hook} value is structure shared with the semantic contribution of the semantic functor and the \textsc{rels} list and the \textsc{hcons} list is the empty list. As an example for a non-compositional combination Copestake et al., 2005 discuss determinerless plural NPs in English. For the analysis of tired squirrels they assume an analysis using a unary branching schema. Their analysis corresponds to the one given in (19):\footnote{We do not assume a unary branching schema for bare plurals but an empty determiner, since using an empty determiner captures the generalizations more directly: while the empty determiner is fully parallel to the overt ones, the unary branching schema is not parallel to the binary branching structures containing an overt determiner. See also Alqurashi and Borsley, 2012 for a similar point regarding relative clauses in Modern Standard Arabic with and without a complementizer.}
The semantic content of the determiner is introduced constructionally in \textit{c-cont}. It consist of the relation \textit{undef-rel}, which is a placeholder for the quantifier that corresponds to \textit{some} or \textit{every} in the case of overt determiners. The \textit{rels} and \textit{hcons} values that are introduced constructionally (2 and 4) are concatenated with the \textit{rels} and \textit{hcons} values of the daughters (3 and 5).

The Semantics Principle can now be specified as follows:

\textbf{Principle 2 (Semantics Principle)} The main semantic contribution of a phrase is identical to the value of \textit{c-cont|hook}. The \textit{rels} value is the concatenation of the \textit{rels} value in \textit{c-cont} and the concatenation of the \textit{rels} values of the daughters. The \textit{hcons} value is the concatenation of the \textit{hcons} value in \textit{c-cont} and the concatenation of the \textit{hcons} values of the daughters.

\subsection*{2.4.3. Decomposition in Syntax vs. Underspecification}

An interesting application of the underspecification of scope constraints is the treatment of the ambiguity of (20a).

\begin{verbatim}
(20) a. dass Max alle Fenster aufmachte
 that Max all windows opened
 ‘that Max opened all windows’
 b. \forall x (window(x) \rightarrow CAUSE(max, open(x)))
 c. CAUSE(max, \forall x (window(x) \rightarrow open(x)))
\end{verbatim}
The first reading corresponds to a situation in which all windows were closed and Max opens each window and the second reading corresponds to a situation in which some windows were open already and Max opened the remaining windows which results in a situation in which all windows are open.

Egg (1999) suggests specifying the meaning of *öffnen* (‘to open’) in an underspecified way. (21) gives an MRS version of his analysis:

(21) (∅, { h1:CAUSE(x, h2), h3:open(y) }, { h2 = q h3 })

The CAUSE operator embeds the open′ relation, but the embedding is not direct. It is stated as a dominance constraint h2 = q h3. This allows for quantifiers to scope between the CAUSE operator and the embedded predicate and therefore admits the readings in (20b,c). The analysis also extends to the readings that can be observed for sentences with adverbials like *wieder* (‘again’). The sentence in (22) has three readings that originate from different scopings of CAUSE, ∀, and wieder (‘again’):

(22) a. dass Max alle Fenster wieder aufmachte
 that Max all windows again opened
b. CAUSE > ∀ > again′ > open′
c. ∀ > CAUSE > again′ > open′
d. ∀ > again′ > CAUSE > open′

The first two readings are so-called repetitive readings and the third one is a restitutive reading. See Dowty, 1979, Section 5.6 on this phenomenon. Since only the relative scope of CAUSE and open′ is fixed, other scope-taking elements can intervene.

With such a semantic representation the syntax-semantics interface can be set up as follows: the adverbial combines with aufmachen and the resulting phrase is combined with the object alle Fenster and the subject Max. The scoping of the universal quantifier and the adverbial wieder depends on the ordering of the elements, that is in (22a) only readings in which ∀ outscopes again′ are available. See Kiss, 2001 for more information of the treatment of quantifier scope in German in the framework of HPSG.

Egg (1999) suggests the underspecification analysis as an alternative to von Stechow’s analysis in the Minimalist Program (1996). Von Stechow assumes a decomposition in syntax in the style of Generative Semantics and relies on several empty heads and movement operations that are necessary to derive readings. As was pointed out by Jäger and Blutner (2003) the analysis does not get all attested readings. Apart from such empirical problems, the underspecification analysis has to be preferred for reasons of simplicity: the syntactic structures directly correspond to observable facts.

2.5. Lexical Rules

Since HPSG is a lexicalist theory, the lexicon plays an important role. The lexicon is not just a prison for the lawless as suggested by Di Sciullo and Williams (1987, p.3), but is structured and lexical items are related to each other. One means of capturing generalizations is lexical rules. A lexical rule says if there is a lexical item with certain properties
then there is also another lexical item with certain other properties. An example for the application of lexical rules is morphology (Pollard and Sag, 1987, Chapter 8.2, Orgun, 1996, Riehemann, 1998, Ackerman and Webelhuth, 1998, Kathol, 1999, Koenig, 1999). The HPSG lexicon (of inflecting languages) consists of roots that are related to stems or fully inflected words. The derivational or inflectional rules may influence part of speech (adjectival derivation) and/or valence (-able adjectives and passive). (23) is an example for a lexical rule. It was suggested by Kiss (1992) to account for the personal passive in German.3 The rule takes as input a verbal stem that governs both a nominative and an accusative. The nominative argument is not represented in the COMPS list of the output. The case of the object is changed from acc to nom. The remaining arguments (if there are any) are taken over from the input (\[\text{\textit{[}}}\)).

(23) Lexical rule for the personal passive following Kiss (1992):

\[
\begin{align*}
\text{PHON } & \text{[}] \\
\text{SYNSEM|LOC|CAT } & \text{[HEAD } \text{verb} \\
 & \text{SUBCAT } \langle \text{NP}[\text{nom}], \text{NP}[\text{acc}] \text{[}] \oplus \text{[}] \rangle \\ \\
\text{stem} & \\
\text{PHON } & \text{[]} \text{f([})} \\
\text{SYNSEM|LOC|CAT } & \text{[HEAD } \text{[} \text{VFORM } \text{passive-part} \\
 & \text{SUBCAT } \langle \text{NP}[\text{nom}] \text{[}] \oplus \text{[}] \rangle \\ \\
\text{word} & \\
\end{align*}
\]

The stem is mapped to a word and the phonology of the input ([\text{\textit{[}]}) is mapped to the passive form by a function f.

During the past decades there has been some discussion concerning the status of lexical rules. One way to formalize them is to fully integrate them into the formalism of typed feature structures. According to this view the input of the lexical rule is a daughter of the output (Krieger and Nerbonne, 1993a, Chapter 7.4.1; Copestake and Briscoe, 1992; Meurers, 1995, 2001; Riehemann, 1998). This is basically equivalent to a unary branching immediate dominance rule. (24) shows the lexical rule in (23) in a format that directly reflects this approach.

3For a more general passive rule that unifies the analyses of personal and impersonal passives see Müller, 2002, Chapter 3. This more general rule for the passive uses the distinction between structural and lexical case.
Lexical rule for the personal passive (fully integrated into the formalism):

\[
\begin{array}{c}
\text{PHON} \ f(\square) \\
\text{SYNSEM} | \text{LOC} | \text{CAT} \\
\quad \text{HEAD} \ \left[\text{VFORM} \ passive-part \right] \\
\quad \text{SUBCAT} \ \left[\text{NP}[\text{nom}] \right] \\ \\
\text{LEX-DTR} \\
\quad \text{PHON} \ \square \\
\quad \text{SYNSEM} | \text{LOC} | \text{CAT} \\
\quad \text{HEAD} \ \left[\text{verb} \right] \\
\quad \text{SUBCAT} \ \left[\text{NP}[\text{nom}], \text{NP}[\text{acc}] \right] \\
\quad \text{stem} \\
\end{array}
\]

A further advantage of this notation is that lexical rules are constraints on typed feature structures and as such it is possible to integrate them into an inheritance hierarchy and to capture generalizations over various linguistic objects.

For instance it was argued by Höhle (1997) that complementizers and finite verbs form a natural class in German.

(25)

(a) dass Karl das Buch liest
that Karl the book reads
‘that Karl reads the book’

(b) Liest Karl das Buch?
reads Karl the book
‘Does Karl read the book?’

In head-movement-inspired approaches (see Borsley (1989) for a head-movement approach for English, Müller and Ørsnes, To appear for a head-movement approach for Danish, and Kiss and Wesche, 1991; Kiss, 1995; Meurers, 2000; Müller, 2008 for head-movement approaches for German) the verb in (25b) is related to a lexical item for the verb as it occurs in (25a) by a lexical rule. The complementizer and the lexical rule are subtypes of a more general type capturing the commonalities of dass in (25a) und liest in (25b).

2.6. Generalizations

HPSG is a theory that places a lot of information in the lexicon. For instance lexical entries of verbs contain detailed descriptions of their arguments, they contain information on how arguments are linked to the semantic contribution of the verb, information about semantic roles and so on. A good way to capture generalizations with respect to this lexical knowledge is to use type hierarchies with multiple inheritance (Pollard and Sag, 1987, Chapter 8.1). Sag (1997) argued for several different immediate-dominance schemata for variants of English relative clauses and modified the feature geometry of HPSG in a way that made it possible to capture the generalizations over the various schemata in an inheritance hierarchy. Figure 2.12 on the facing page gives an example of how (parts...
2.6. Generalizations

Figure 2.12.: Part of an inheritance hierarchy that contains lexical entries and immediate dominance schemata

Draft of Friday 2nd November, 2012, 21:32
A. List of Phrases Covered/Rejected by the Grammar

idiom + light verb construction

(U mard rā dust dāšt.
he/she man DOM friend had
‘He/she loved the man.’)

incorporation + light verb construction

(Ali telefon kard.
Ali telephone did.
‘Ali called.’)

causative + light verb construction

(Man rádiyo bāz kardam.
I radio open do.
‘I opened the radio.’)

causative + light verb construction + future

(Man rádiyo bāz xāham kard.
I radio open will do.
‘I will open a radio.’)

(Man rádiyo xāham bāz kard.
I radio will open do.
‘I will open a radio.’)
A. List of Phrases Covered/Rejected by the Grammar

(7) من کتاب خواهم برد.
Man ketāb xāham bar dāšt.
I book will PART had
‘I will take a book.’

(8) من کتاب برم خواهم داشت.
Man ketāb bar xāham dāšt.
I book PART will had
‘I will take a book.’

light verb construction + coordination

(9) من رادیو باز و تمیز کردم.
Man rádiyo bāz va tamiz kardam.
I radio open and clean did
‘I opened and cleaned a radio.’

idiom + light verb construction + negation

(10) او مرد را دوست نداست.
U mard rā dust negāšt.
He/she man DOM friend NEG-have.
‘He/she does not love the man.’

idiom + light verb construction + future

(11) او مرد را دوست خواهد داشت.
U mard rā dust xāhad dāšt.
He/she man DOM friend want have
‘He/she will love the man.’

idiom + light verb construction + negation + future

(12) او مرد را دوست نخواهد داشت.
U mard rā dust naxāhad dāšt.
He/she man DOM friend NEG-want have
‘He/she will not love the man.’

(13) * او مرد را دوست خواهد نداشت.
U mard rā dust xāhad negāšt.
He/she man DOM friend want NEG-have
‘He/she will not love the man.’

Draft of Friday 2nd November, 2012, 21:32
negation + passive

(14) مريم در خیابان دیده شد. Maryam dar xiyābān dide šod.
Maryam in street seen become.
‘Maryam was seen in the street.’

(15) مريم در خیابان دیده نشد. Maryam dar xiyābān dide našod.
Maryam in street seen NEG-become.
‘Maryam was not seen in the street.’

(16) *مريم در خیابان ندیده شد. Maryam dar xiyābān nadide šod.
Maryam in street NEG-seen become.

negation + copula

(17) مريم غمگین شد. Maryam qamgin šod.
Maryam sad become
‘Maryam became sad.’

(18) مريم غمگین نشد. Maryam qamgin našod.
Maryam sad NEG-become
‘Maryam did not become sad.’

cliticization

(19) دیدم ت. Didam at.
saw-1-sg-2sg
‘I saw you’

(20) دیدم ش. Didam aš.
saw-1-sg-3sg
‘I saw him’

(21) اوروشن کرد ش. U rošan kard aš.
He/she light do DO.CL.3sg
‘He/she turned it on.’

Draft of Friday 2nd November, 2012, 21:32
A. List of Phrases Covered/Rejected by the Grammar

(22). او روشن ش کرد.
U roshan aš kard.
He/she light DO.CL.3sg do
‘He/she turned it on.’

(23). من باز خواهم ش کرد.
Man bāz xāham aš kard.
I open want DO.CL.3sg do
‘I will open it.’

(24). من باز ش خواهم کرد.
Man bāz aš xāham kard.
I open DO.CL.3sg want do
‘I will open it.’

(25). من خواهم ش نوشتم.
Man xāham aš nevešt.
I will DO.CL.3sg write
‘I will write it.’

cliticization + possessives

(26). من مادر ش را دیدم.
Man mādar aš rā didam.
I mother-Poss-3.SG RA saw
‘I saw his/her mother.’

cliticization + Ezafe + possessives

(27). کتاب بزرگ ت
ketābe bozorg at
book+EZ big+2SG
‘your big book’

cliticization + possessives + ezafe

(28). کتاب م
ketāb am
book-my
‘my book’

(29). کتاب من
ketābe man
book+EZ 1/me
‘my book’

Draft of Friday 2nd November, 2012, 21:32
possessives + demonstrative determiner

این کتاب میرم
in ketābe maryam
this book of Maryam

inchoative + causative + light verb construction

رادیو باز شد.
Rādiyo bāz šod.
radio open became.
‘The radio opened.’

مادر بچه را آرام کرد.
mādar baçe rā ārām kard.
mother child DOM silent make-Past
‘The mother silenced the child.’

بچه آرام شد.
baçe ārām šod.
child silent become
‘The child became silent.’

بچه توسط مادر ش آرام شد.
baçe tavassote mādar aš ārām šod.
child by mother-his silent become
‘The child became silent by his mother.’

nominalization + light verb construction

من بازی کن را دیدم.
Man bāzi kon rā didam.
I play do RA saw
‘I saw the player.’

من بازی کنان را دیدم.
Man bāzi konān rā didam.
I play do-PL RA saw
‘I saw the players.’
A. List of Phrases Covered/Rejected by the Grammar

(38)

باز کنندگان
bāz konandegān
open do-er-PL
‘openers’

inchoative + verbal noun + light verb construction

(39)

علي ساسان را شکست داد.
Ali Sāsān rā šekast dād.
Ali Sasan-DOM defeat GIVE-Past
‘Ali defeated Sasan.’

(40)

سasan شکست خورد.
Sāsān šekast xord.
Sasan defeat COLLIDE-Past
‘Sasan was defeated./ Sasan suffered defeat.’

verbal noun + inflection

(41) *

احداثا
ehdāhā
giving-Pl

(42)

علي كتاب را به ساسان اهداد
Ali ketāb rā be sāsān ehdā kard.
John book DOM to Sasan giving do-past
‘Ali gave the book to Sasan.’

verbal noun

(43) *

این اهدا
in ehdā
this giving

process noun + light verb construction

(44)

علي با ساسان حرف زد.
Ali bā Sāsān harf zad.
Ali with Sasan talk BEAT-Past
‘Ali talked to Sasan.’

(45)

حرفهای علي با ساسان
harfhāye Ali bā Sāsān
talks-EZ Ali with Sasan
‘Ali’s talks with Sasan’
auxiliary placement

(46) من كتاب را نوشته بودم.
Man ketāb rā nevešte budam.
I book DOM written was-1st-Sg
'I had written the book.'

(47) *من كتاب را بودم نوشته.
Man ketāb rā budam nevešte.
I book DOM was-1st-Sg written

(48) من كتاب را خواهم نوشت.
Man ketāb rā xāham nevešt.
I book DOM will-1st-Sg wrote
'I will write the book.'

(49) *من كتاب را نوشته خواهم.
Man ketāb rā nevešt xāham.
I book DOM wrote will-1st-Sg
'I will write the book.'

(50) *من خواهم كتاب را نوشت.
Man xāham ketāb rā nevešt.
I will-1st-Sg book DOM wrote
'I will write the book.'

(51) من این کار را انجام خواهم داد.
Man in kār rā anjām xāham dād.
I this job DOM performance will-1st-Sg gave
'I will do this job.'

(52) *من این کار را انجام داده خواهم.
Man in kār rā anjām dāde xāham.
I this job DOM performance gave will-1st-Sg
'I will do this job.'

(53) من این کار را انجام داده بودم.
Man in kār rā anjām dāde budam.
I this job DOM performance given was-1st.Sg
'I had done this job.'

(54) *من این کار را انجام بودم داده.
Man in kār rā anjām budam dāde.
I this job DOM performance was-1st.Sg given
'I had done this job.'
auxiliary + clitic

(55) سیب + را خریده بودم. sib rā xaride budam.
apple+rā bought was+1sgS
‘I had bought the apple.’

(56) خریده بودم aš.
xaride budam bought was+1sgS+3sg
‘I had bought it.’

(57) خریده یش بودم * xaride yeš budam
bought+3sg was+1sgS

(58) کتاب + را خواهم خرید. ketāb rā xāham xarid.
book+rā want+1sgS buy
‘I will buy the book.’

(59) خواهم ش خرید. xāham aš xarid.
want+1sgS+3sg buy
‘I will buy it.’

(60) خواهم خرید ش. xāham xarid aš.
want+1sgS buy+3sg
‘I will buy it.’

progressive

aspect + indicative + progressive + indefinite future

(61) مرو م miravam.
Ind/Prog/Indef. Fut.-go-1sg
‘I go. / I am going. / I will go.’

(62) مرو م miraftam.
Ind/Prog
‘I used to go. / I was going.’
guš mikonam.
\[\text{ear Ind/Prog/Indef. Fut.-do-1sg}\]
'I listened. / I am listening. / I will listen.'

guš mikardam.
\[\text{ear Ind/Prog}\]
'I used to listen. / I was listening.'

present + continuous incompletive

\[\text{man dāram miravam.}\]
'I have-1sg prog-go-1sg' 'I am going.'

\[\text{to dāri miravi.}\]
'you have-2sg prog-go-2sg' 'You are going.'

\[\text{u dārad miravad.}\]
'he/she have-3sg prog-go-3sg' 'He/she is going.'

past + continuous incompletive

\[\text{man dāštam miraftam.}\]
'I had-1sg prog-go-1sg' 'I was going.'

\[\text{to dāstī miraftī.}\]
'you had-2sg prog-go-2sg' 'You were going.'

\[\text{u dāšt miraft.}\]
'he/she had-3sg prog-go-3sg' 'He/she were going.'
present + continuous incompletive + complex predicate

(71) من دارم گوش می‌کنم.
man dāram guš mikonam.
I have ear Ind/Prog/Indef. Fut.-do-1sg
'I am listening.'

(72) *من دارم گوش می‌کردم.
man dāram guš mikardam.
I have ear Ind/Prog/Indef. Fut.-did-1sg

(73) من گوش دارم می‌کنم.
man guš dāram mikonam.
I ear have Ind/Prog/Indef. Fut.-do-1sg
'I am listening.'

(74) تو داری گوش می‌کنی.
to dāri guš mikoni.
you have ear Ind/Prog/Indef. Fut.-do-1sg
'I am listening.'

(75) تو گوش داری می‌کنی.
to guš dāri mikoni.
you ear have Ind/Prog/Indef. Fut.-do-1sg
'I am listening.'

(76) او دارد گوش می‌کند.
u dārad guš mikonad.
he/she have ear Ind/Prog/Indef. Fut.-do-1sg
'I am listening.'

(77) او گوش دارد می‌کند.
u guš dārad mikonad.
he/she ear have Ind/Prog/Indef. Fut.-do-1sg
'I am listening.'

(78) *من داشتم گوش می‌کنم.
man dāštam guš mikonam.
I had ear Ind/Prog/Indef. Fut.-do-1sg
'I was listening.'

(79) *من داشتم گوش می‌کردم.
man dāštam guš mikardam.
I had ear Ind/Prog/Indef. Fut.-did-1sg
'I was listening.'
من گوش داشتیم یک دم

man guš dāštam mikardam.
I ear had Ind/Prog/Indef. Fut.-do-1sg
'I was listening.'

(81)
تو داشتی گوش می کردی.
to dāštī guš mikardī.
you had ear Ind/Prog/Indef. Fut.-do-1sg
'I was listening.'

(83)
او داشت گوش می کرد.
u dāšt guš mikard.
he/she had ear Ind/Prog/Indef. Fut.-do-1sg
'I was listening.'

definite future

من خواهم رفت.
man xāhamraft.
I futur-sg went.
'I will go.'

(86)
تو خواهی رفتم.
to xāhi raft.
you futur-sg went.
'You will go.'

(87)
او خواهد رفت.
u xāhad raft.
he/she futur-sg went.
'He/she will go.'

definite future + complex predicate

من گوش خواهی کردم.
man guš xāham kard.
I ear futur-sg do
A. List of Phrases Covered/Rejected by the Grammar

‘I will listen.’

(89) تَوْگُوش خوایه کرد. to guš xāhi kard.
you ear futur-sg do
‘You will listen.’

(90) او گُوش خوایهد کرد. u guš xāhad kard.
he/she ear futur-sg do
‘He/she will listen.’

perfect

(91) مریم خنیده بود. Maryam xandide bud.
Maryam laughed had
‘Maryam had laughed.’

(92) مریم کتاب را خوانده بود. Maryam ketāb rā xānde bud. ;;
Maryam book RA read has
‘Maryam read the book.’

negation

(93) نمی روم. nemiravam.
NEG-IND-go-1sg
‘I do not go.’

(94) نِروم neravam
NEG-go-1sg

(95) نِروم naravam
NEG-(SUBJUNCTIVE-)go-1sg

(96) نرتفتم naraftam.
NEG-went-1sg
‘I did not go.’
(97) نداشتن نمی‌رفتم.

nadāštam nemiraftam.
NEG-Progr NEG-IND-go-1sg
'I am not not going.'

(98) نداشتن می‌رفتم.

nadāštam miraftam.
NEG-Progr IND-go-1sg

(99) داشتن نمی‌رفتم.

dāštam nemiraftam.
Progr NEG-IND-go-1sg

negation + complex predicate

(100) گوش نمی‌کنم.

guš nemikonam.
ear NEG-IND-do-1sg
'I do not listen.'

(101) گوش نکنم.

guš nekonam.
ear NEG-do-1sg

(102) گوش نکننام.

guš nakonam.
ear NEG-(SUBJUNCTIVE-)do-1sg
'I did not listen.'

(103) گوش نکردم.

guš nakardam.
ear NEG-did-1sg
'I did not listen.'

direct object marker

(104) تو را دیدم.

to ro didam.
you+rā saw+1sgS
'I saw you.'
A. List of Phrases Covered/Rejected by the Grammar

direct object marker + case

(105) علي فوت كرد.
Ali fowt kard.
Ali death did
‘Ali died.’

(106) علي را فوت كرد.
Ali rā fowt kard.
Ali DOM death did

(107) علي فوت را كرد.
Ali fowt rā kard.
Ali death DOM did

agreement

(108) من خندیدم.
man xandidam.
I laughed+1sgS
‘I laughed.’

(109) آنها خندیدند.
ānhā xandidand.
they laughed+3plS
‘They laughed.’

(110) شما خندیدید.
šomā xandidid.
you laughed+2plS
‘You laughed.’

(111) من افتادم.
man oftādam.
I fell+1sgS
‘I fell.’

(112) کتاب م افتادم.
ketāb am oftādam
book+1sg fell+1sgS
‘My book fell.’

(113) کتاب م افتاد.
ketāb am oftād.
book+1sg fell+3sgS
‘My book fell.’
Ezafe

(114) کیف را دیدم.
kif rā didam.
bag RA saw
'I saw the bag.'

(115) کیف را دیدم.
kife rā didam.
bag-Ez RA saw

Ezafe + noun noun

(116) کیف چرم را دیدم.
kife čarm rā didam.
bag-Ez leather RA saw
'I saw the leather bag.'

(117) کیف چرم را دیدم.
kif čarme rā didam.
bag leather-Ez RA saw

(118) کیف چرم را دیدم.
kife čarme rā didam.
bag-Ez leather-Ez RA saw

(119) کیف چرم بزرگ دیدم.
kife čarme bozorg didam.
bag-Ez leather-Ez big saw
'I saw a big leather bag.'

(120) کیف چرم دوست م دیدم.
kife čarme dust am rā didam.
bag-Ez leather-Ez friend+1sg RA saw
'I saw the my friend’s leather bag.'

Ezafe + adjective

(121) خانه بزرگ قدیمی را دیدم.
xuneye bozorge qadimi rā didam.
house+EZ big+EZ old RA saw
'I saw the big old house.'

(122) خانه بزرگ قدیمی را دیدم.
xuneye bozorge qadimie rā didam.
house+EZ big+EZ old+EZ RA saw
Ezafe + noun with prepositional object

(123)

بحث با امید
bahs bā omid
discussion with Omid

(124)

*بحث با امید
bahse bā omid
discussion-EZ with Omid

(125)

بحث مریم با امید
bahse Maryam bā omid
discussion-EZ Maryam with Omid
‘Maryam’s discussion with Omid’

(126)

*بحث مریم با امید
bahse Maryame bā omid
discussion-EZ yesterday-EZ Maryam-EZ with Omid

(127)

این کتاب
ine ketāb
this-EZ ketāb

Ezafe + adjective with complement

(128)

نگران مریم
negarāne Maryam
worry-EZ Maryam
‘worried about Maryam’

(129)

حرفهای علی با ساسان
harfhāye Alie bā Sāsān
talks-EZ Ali-EZ with Sasan
‘Ali’s talks with Sasan’

Ezafe + light verb construction

(130)

او مرد را دوست داشت.
U mard rā duste dāšt.
he/she man DOM friend-EZ had

passive

(131)

على يک کتاب به ساسان داد.
Ali ye ketāb be sāsān dād.
Ali a book to Sasan gave
‘Ali gave a book to Sasan.’
117

(132) ye ketāb be sāsān dāde šod.
A book to Sasan given was
'A book was given to Sasan.'

passive + intransitive verb

(133) Maryam bā sang be divār zad.
Maryam with stone to wall hit
'(Lit.) Maryam hit to the wall with a stone/stones.'

(134) bā sang be divār zade šod
with stone to wall hit.pp become

passive + complex predicate

(135) Maryam be Omīd tohmat zad.
Maryam to Omīd slander hit
'Maryam slandered Omīd.'

adjective

(136) Ali bozorg.
Ali big

participle + passive + attributive

(137) marde davide
man-EZ run.PAST

(138) marde dar baste
man-EZ door closed
'a man who has closed doors'

(139) marde oftāde āmad.
man-EZ fall + -ed came
'a fallen man came.'
118

A. List of Phrases Covered/Rejected by the Grammar

(140). در بسته شد.
 * dar baste šod.
 * door closed became

 ‘The door was closed.’

(141). درهای بسته
 * darhāye baste
door-PL-EZ closed
 * ‘the closed doors’

(142). مرد شکست خورده آمد.
 * marde šekast xorde āmad.
 * man-EZ defeat + COLLIDE + -ed came

 ‘A conquered man came.’

(143). ستایش علي را کردم.
 * setāyeše Ali rā kardam.
 * praise-EZ Ali-DOM did

 ‘I praised Ali.’

sentential complement

(144). می دانم که کیمیا این فیلم را دید.
 * midunam ke Kimiyā in film ro did.
 * DUR-know-1sg that Kimiyā this movie-DOM saw.3sg

 ‘I know that Kimiyā has seen this movie.’

nonlocal dependency

(145). کیمیا می دانم که این فیلم را دید.
 * Kimiyā midunam ke in film ro did.
 * Kimiyā DUR-know-1sg that this movie-DOM saw.3sg

 ‘As for Kimiyā, I know that she has seen this movie.’

(146). این فیلم را می دانم که کیمیا دید.
 * in film ro midunam ke Kimiyā did.
 * this movie-DOM DUR-know-1sg that Kimiyā saw.3sg

 ‘As for this movie, I know that Kimiyā has seen it.’

(147). به کیمیا من فکر می کنم که آزرو آن کتاب را داد.
 * be Kimiyā man fekr mikonam ke Ārezu un ketāb ro to Kimiyā I thought DUR-do-1sg that Arezu that book-DOM gave.3sg
dād.

 ‘To Kimiyā I think that Arezu has given that book.’

Draft of Friday 2nd November, 2012, 21:32
تو سینما فکر می‌کنم کیمیا را دید.

\text{tu sinamā fekr mikonam Kimiyā ro did. in cinema thought dur-do-1sg Kimiyā RA saw}

‘It was in the cinema that I think she saw Kimiyā.’

weather verbs

\text{دیروز باران آمد. (149)}
\begin{align*}
\text{diruz} & \quad \text{bārun āmad.} \\
\text{yesterday rain} & \quad \text{came-3sg}
\end{align*}

‘Yesterday, it rained.’

i-derivation

\text{جاهای دیدنی می‌دانم. (150)}
\begin{align*}
\text{jāhāye} & \quad \text{didani midunam.} \\
\text{place-pl-ez see-i dur-know-1sg}
\end{align*}

‘I know places that are worth visiting’

\text{کتاب فروختنی می‌بینم. (151)}
\begin{align*}
\text{ketābe} & \quad \text{foruxtani mibinam.} \\
\text{book-ez sell-i dur-see-1sg}
\end{align*}

‘I see a book (which is) for sale’

\text{این مهمانهای رفتنی (152)}
\begin{align*}
\text{in} & \quad \text{mehmānhāye raftani} \\
\text{this guest-pl-EZ go-i}
\end{align*}

‘These guests which seem to intend to leave.’

i-derivation + negation + copula

\text{این مهمانهای رفتنی نیستند. (153)}
\begin{align*}
\text{in} & \quad \text{mehmānhā raftani nistand.} \\
\text{this guest-pl go-i NEG-are}
\end{align*}

‘These guests do not seem to intend to leave.’

coordination

\text{علی و مریم تلفن کردند. (154)}
\begin{align*}
\text{Ali va} & \quad \text{Maryam telefon kardand.} \\
\text{Ali and Maryam telephone did-PL}
\end{align*}

‘Ali and Maryam called.’
A. List of Phrases Covered/Rejected by the Grammar

1. علي تلفن كرد و فوت كرد. (155)
 Ali telefon kard va fowt kard.
 Ali telephone did and die did
 ‘Ali called and died.’

2. علي مرد را ديد و خندید. (156)
 Ali mard rā did va xandid.
 Ali man RA saw.3sg and laughed.3sg
 ‘Ali saw a man and laughed. / and he laughed.’

3. علي مرد را ديد و خندیدم. (157)
 Ali mard rā did va xandidam.
 Ali man RA saw.3sg and laughed.1sg
 ‘Ali saw a man and I laughed.’

coordination + case syncretism

coordination + agreement

4. علي و مریم تلفن كرد . (158)
 Ali va Maryam telefon kard.
 Ali and Maryam telephone did-SG.

relative clause

5. زنی که من دوست دارم خندید. (159)
 zani ke man dust dāram xandid.
 woman-RESTR COMP I like laughed
 ‘the woman that I love laughed’

6. زنی من دوست دارم. (160)
 zani man dust dāram
 woman-RESTR I like

7. مردی که زن را دید خندید. (161)
 mardi ke zan rā did xandid.
 man-RESTR COMP woman RA saw laughed
 ‘the man who saw the woman laughed’

8. مردی که شما دیدن خندید. (162)
 mardi ke šomā didid xandid.
 man-RESTR COMP you-2PL saw-2PL laughed
 ‘the man whom you saw laughed’

Draft of Friday 2nd November, 2012, 21:32
in this man whom you saw laughed

'The movie whom I know that Kimiyā has seen is sad.'

This report that Ali laughed was a lie.

Intended: The report which I saw that ALi laughed is interesting.'

The man whose shirt is green laughed.

'man-RESTR COMP shirt-EZ his-RESUMP green be laughed
'The man whose shirt is green laughed.'

Draft of Friday 2nd November, 2012, 21:32
A. List of Phrases Covered/Rejected by the Grammar

1. "The man from whom you took money yesterday laughed." (172)
2. "The man whom you saw and gave money to laughed." (175)
3. "The man whose shirt was green and to whom you gave money laughed." (178)
5. "Maryam took whatever Ali had bought." (185)

Draft of Friday 2nd November, 2012, 21:32
پیراهن هرکی کشیف بود را اخراج کرد. *
pirāhane harki kasif bud ro exrāj kard.
shirt-EZ whoever dirty was RA fire did
‘He fired the shirt of anyone who was dirty.’

هرکی پیراهن ش کشیف بود را اخراج کرد.
harki pirāhan eš kasif bud ro exrāj kard.
whoever shirt-EZ-he dirty was RA fire did
‘He fired whoever’s shirt was dirty.’

هرکی آمد و به ش پول دادیم خندید.
harki āmad va be ū pul dādim xandid.
whoever came and to=3SG money gave-1sg laughed-3sg
‘Whoever came and we gave money to (*him) laughed.’

مريم هرکی من با ش حرف زدم دوست دارد.
Maryam harki man bā ū harf zadam dust dāre.
Maryam whoever I with=3SG word hit friend have
‘Maryam likes whoever I talk with.’

extraction + resumptives

کیمیا می دانم که این فیلم را دید. *
Kimiyyā midunam ke u in film ro did.
Kimiyyā DUR-know-1sg that she this movie-DOM saw.3sg
‘As for Kimiyā, I know that she saw this movie.’

کیمیا می دانم که این فیلم را دیده ش. *
Kimiyyā midunam ke in film ro did eš.
Kimiyyā DUR-know-1sg that this movie-DOM saw.3sg=3SG
‘As for Kimiyā, I know that she saw this movie.’

این مرد را می دانم که کیمیا او را دید.
in mard ro midunam ke Kimiyā u rā did.
this man-DOM DUR-know-1sg that Kimiyā him RA saw.3sg
‘As for this man, I know that Kimiyā saw him.’

این مرد را می دانم که کیمیا دیده ش.
in mard ro midunam ke Kimiyā did eš.
this man-DOM DUR-know-1sg that Kimiyā him RA saw=3sg
‘As for this man, I know that Kimiyā saw him.’
A. List of Phrases Covered/Rejected by the Grammar

(187) او را می‌دانم که کیمیا دیده شد.
he-DOM DUR-know-1sg that Kimiyā him RA saw.3sg
‘As for him, I know that Kimiyā saw him.’

(188)* این مرد می‌دانم که کیمیا دیده شد.
in this man DUR-know-1sg that Kimiyā him RA saw.3sg
‘As for this man, I know that Kimiyā saw him.’

(189)* او می‌دانم که کیمیا دیده شد.
he-DOM_i saw.1SG him_i
‘I saw him.’

(190) او را دیدم.
he_i saw.1SG him_i
‘I saw him.’

(191)* او دیدم.
he_i saw.1SG him_i

(192) به کیمیا من فکر می‌کنم که آرزوز به یا آن یک تاها و داد.
be Kimiyā man fekr mikonam ke Ārezu be u un ketāb to Kimiyā I thought DUR.do.1sg that Arezu to her that book-DOM ro dād.
gave.3sg
‘To Kimiyā I think that Arezu has given that book.’

(193)؟ کیمیا من فکر می‌کنم که آرزوز به یا آن یک تاها و داد.
Kimiyā man fekr mikonam ke Ārezu be u un ketāb to Kimiyā I thought DUR-do-1sg that Arezu that book-DOM gave ro dād.
‘To Kimiyā I think that Arezu has given that book.’

questions

(194) تو فکر می‌کنی مریم با کی حرف زد؟
to fekr mikoni Maryam bā ki harf zad?
you think do Maryam with who talk did
‘Who do you think that Maryam talked to?’

Draft of Friday 2nd November, 2012, 21:32
با کی تو فکر می‌کنی مریم حرف زد؟
bā ki to fekr mikoni Maryam harf zad?
with who you think do Maryam talk did
‘Who do you think that Maryam talked to?’

‘Who do you think that Maryam talked to?’

agar Ali Maryam rā bebinad, āli mišavad.
if Ali Maryam RA SUBJUNCTIVE.see.3sg PRO great IMPF.be.3sg
‘If Ali sees Maryam, this would be great.’

\textbf{adjective + negation}

\textbf{comparative}

\textbf{Draft of Friday 2nd November, 2012, 21:32}
A. List of Phrases Covered/Rejected by the Grammar

(204)
bozorgtar xune
bigger house

(205)
xuneye bozorgtar az xuneye Ali
house.EZAFE bigger than house Ali
‘the house which is bigger than Ali’s house’

superlative

(206)
bozorgtarin xune
biggest house
‘the biggest house’

(207)
in bozorgtarin xune
this biggest house
‘this biggest house’

(208)
xuneye bozorgtarin
house.EZAFE biggest

(209)
bozorgtarine xune
this biggest house
‘this biggest house’

(210)
bozorgtarine xuneye
the biggest houses
‘the biggest houses’

participle adjectives

(211)
livâne šekaste
glass.EZ broken
‘the broken glass.’

Draft of Friday 2nd November, 2012, 21:32
yes/no questions

(212) آیا علی را دیدی؟
ayā Ali rā didī?
INT Ali RS saw
‘Did you see Ali?’

noun to adjective derivation

(213) كتاب ایرانی را دید.
ketāb irānī rā did.
book.EZ America.Adj RA saw
‘I saw the Iranian book / I saw the book of the Iranian’

(214) كتاب آمریکایی را دید.
ketāb āmrikāyi rā did.
book.EZ America.Adj RA saw
‘I saw the American book / I saw the book of the American’

(215) این آمریکایی را دید.
in āmrikāyi rā did.
this American RA saw
‘I saw this American (person from America).’

(216) ایرانیها را دید.
irānihā rā did.
Iranian.PL RA saw
‘I saw an Iranians.’

Bonami, Olivier and Samvelian, Pollet. 2009. Inflectional Periphrasis in Persian. In Müller...

Bibliography

Stanford University.

Draft of Friday 2nd November, 2012, 21:32

Bibliography

Draft of Friday 2nd November, 2012, 21:32
Contemporary Linguistics, Chicago, IL/London: The University of Chicago Press.
Bibliography

Draft of Friday 2nd November, 2012, 21:32
Namensverzeichnis

Ackerman, Farrell, 19, 50
Ajdukiewicz, Kasimir, 6
Alexopoulou, Theodora, 53
Alqurashi, Abdulrahman, 16
Aronoff, Mark, 50
Artstein, Ron, 39
Asudeh, Ash, 75
Barjasteh, Darab, 31, 40, 47, 63, 73
Barwise, Jon, 11, 44
Behaghel, Otto, 36
Bender, Emily M., 3
Bergen, Benjamin K., vi, 65
Bierwisch, Manfred, 57
Bird, Steven, 5
Bod, Rens, v
Bonami, Olivier, iv, 27, 82, 86
Borsley, Robert D., 16, 20
Bouma, Gosse, 8, 95
Bresnan, Joan, v, 37, 38
Briscoe, Ted J., 19
Bybee, Joan, 36
Carpenter, Bob, 5
Chang, Nancy, vi, 65
Chomsky, Noam, v, vi, 34
Cinque, Guuglielemo, v
Clark, Stephen, 3
Comrie, Bernard, 6, 35
Copestake, Ann, 12, 15, 16, 19, 45
Crocker, Matthew Walter, iv
Crysmann, Berthold, 41, 65
Culicover, Peter W., vi
Dabir-Moghaddam, Mohammad, 32
Darzi, Ali, 75
Davis, Anthony R., 13
De Kuthy, Kordula, 43
Di Sciullo, Anna-Maria, 18
Dowty, David R., 18, 50
Egg, Markus, 18
Eisenberg, Peter, v
Embick, David, 47
Engelkamp, Judith, 11
Erbach, Gregor, 11, 46
Evans, Nicholas, vi
Family, Neiloufar, 55, 72
Fanselow, Gisbert, v, 43
Fillmore, Charles J., 71
Fitch, W. Tecumseh, v
Flickinger, Daniel P., 12, 15, 16, 45
Fodor, Janet Dean, v
Folli, Raffaella, 31, 33, 35
Freidin, Robert, v
Freudenthal, Daniel, v
Gazdar, Gerald, iv, 9, 69, 95
Geach, Peter Thomas, 47
Ghayoomi, Masood, iv
Ghomeshi, Jila, 32–34
Ginzburg, Jonathan, 12, 44
Gobet, Fernand, v
Gold, Mark E., v
Goldberg, Adele E., 31–37, 40, 41, 45, 46, 59–61, 63, 64, 66–68, 70–72
Grimshaw, Jane, 54
Gunji, Takao, 11, 43
Haftka, Brigitta, 49
Haider, Hubert, 25
Haiman, John, 36
Harley, Heidi, 31, 33, 35
Hasselmath, Martin, 68
Hauser, Marc D., v
Hinrichs, Erhard W., 11, 47, 49
Höhle, Tilman N., 5, 20, 39
Jackendoff, Ray S., vi
Jacobs, Joachim, vi
Jäger, Gerhard, 18
Johnson, David E., v
Johnson, Kent, v
Johnson, Mark, 5
Kahnemuyipour, Arsalan, 33
Karimi, Simin, 27, 31, 33, 35, 37, 43, 45, 46, 54, 68, 73, 75, 89–91
Karimi-Doostan, Gholamhossein, 35, 37, 38, 49, 54, 57, 58
Kathol, Andreas, 3, 19, 43, 50, 62, 65
Kay, Paul, 71, 72
Keenan, Edward L., 6, 35
King, Paul, v, 5
King, Tracy Holloway, 3
Kiss, Tibor, 18–20, 43
Klein, Ewan, iv, 5, 9, 95
Koenig, Jean-Pierre, 13, 19, 50, 62, 68
Kolb, Hans-Peter, v
Kolliahou, Dimitra, 53
Kornai, András, iv
Krean, Brigite, 46
Krieger, Hans-Ulrich, 19, 67
Kuhns, Robert J., iv
Lappin, Shalom, v
Lazar, Gilbert, 77, 80, 81
Levine, Robert D., v
Levinson, Stephen C., vi
Lewin, Ian, iv
Lipenkova, Janna, iv
Lüdeling, Anke, 35
Malouf, Robert, 95
Marantz, Alec, 37
Massam, Diane, 32–34
Mchombo, Sam A., v, 37, 38
Megerdoomian, Karine, 33, 38, 39, 41
Melnik, Nurit, iv
Mester, Ralf-Armin, 54
Meurers, Walt Detmar, iv, 19, 20, 50
Mohammad, Jan, 37, 46, 54, 68
Monachesi, Walt, 53
Mortazavinia, Marzieh, 75
Müller, Stefan, iv–vi, viii, 8, 19, 20, 35, 39, 43, 44, 46, 47, 49, 50, 53, 57, 58, 65
Nakazawa, Tsumeko, 11, 47, 49
Nerbonne, John, 19, 67
Nunberg, Geoffrey, 36, 46
Orgun, Cemil Orhan, 19, 50
Ørsnes, Bjarne, iv, 8, 20
Penn, Gerald, iv
Perry, John, 11, 44
Pine, Julian M., v
Pollard, Carl J., v, vi, 3, 5, 8, 11, 12, 15, 16, 19, 20, 34, 42–46, 50, 95
Pullum, Geoffrey K., iv–vi, 6, 9, 35, 95
Richter, Frank, iv, v, 5, 12, 44
Riehemann, Susanne Z., 19, 50
Rizzi, Luigi, v
Sag, Ivan A., iv–vi, 3, 5, 8, 9, 11, 12, 15, 16, 19, 20, 34, 36, 42, 44–46, 50, 95
Sailer, Manfred, 12, 44
Samian, Vida, 24
Samvelian, Pollet, iv, 27, 39, 82–84, 86, 87, 93
Saussure, Ferdinand de, 42
Scholz, Barbara C., v, vi
Shieber, Stuart M., v
Stabler, Edward P., vi
Stiebels, Barbara, 57
Stump, Gregory T., 50
Taghvaipour, Mehran A, 91–95, 98
Thiersch, Craig L., v
Tomasello, Michael, v
Uszkoreit, Hans, 11, 70
Vahedi-Langrudi, Mohammad Mahdi, 32, 37–39, 46, 54, 57, 58
van Noord, Gertjan, 8
Veenstra, Mettina Jolanda Arnoldina, v
von Stachow, Arnim, 18
Wasow, Thomas, v, 36, 46
Webbellhuth, Gert, 19, 50
Wechsler, Stephen Mark, 3, 13
Wesche, Birgit, 20
Wiese, Richard, 38, 39
Williams, Edwin, 18
Wunderlich, Dieter, 57
Zeller, Jochen, 39
Zlatić, Larisa, 3

Draft of Friday 2nd November, 2012, 21:32
Verzeichnis der Sprachen

Basque, v

English, iv, v, 92

French, iv

German, iv, v

Japanese, v

Maltese, iv

Mandarin Chinese, iv

Modern Standard Arabic, 16

Persian, iv

Spanish, iv

Yiddish, iv
Sachregister

BerliGram, iv
Categorial Grammar (CG), v
Construction Grammar (CxG), v
 Embodied, vi
 Sign-Based, vi
CoreGram, iv
DanGram, iv

feature
 c-cont, 15
 hook, 16

Government and Binding (GB), vi

language acquisition, v–vi
Lexical Functional Grammar (LFG), v

Minimalism, vi

Poverty of the Stimulus, v

Universal Grammar (UG), v–vi