On the relationship between (Enhanced) Universal Dependencies and HPSG

Gosse Bouma Virtual Leuven/Berlin/Seattle, August, 18, 2020

University of Groningen

Summary

Is there a need for formal grammar in the age of BERT?

- Statistical models pre-trained on huge amounts of raw text and fine-tuned on modest amounts of annotated data perform at amazing levels, outperforming (statistical) rule-based approaches
- So where does that leave theories such as HPSG?

Hypothesis 1

• Treebank annotation is shallow and misses many features essential for full interpretation. Richer representations will require more linguistic guidance

Hypothesis 2

• Linguistic theory provides constraints & generalisations that can improve accuracy of neural models

• Automatic parsing into Enhanced UD is feasible

On the linguistic adequacy of Enhanced UD

- Automatic parsing into Enhanced UD is feasible
- Enhanced UD is able to capture most of the information that is present in formal grammar models (HPSG, LFG)

On the linguistic adequacy of Enhanced UD

- Automatic parsing into Enhanced UD is feasible
- Enhanced UD is able to capture most of the information that is present in formal grammar models (HPSG, LFG)
- Slightly different formats are possible as well:
 - Surface-Syntactic UD (Gerdes et al, 2017, 2019): capture (phrasal) distributional generalisations (function words are heads) repartitioning dependency relations, surface vs deep syntax

- Automatic parsing into Enhanced UD is feasible
- Enhanced UD is able to capture most of the information that is present in formal grammar models (HPSG, LFG)
- Slightly different formats are possible as well:
 - Surface-Syntactic UD (Gerdes et al, 2017, 2019): capture (phrasal) distributional generalisations (function words are heads) repartitioning dependency relations, surface vs deep syntax
- Semantic Interpretation is underdeveloped area:
 - Reddy, 2017, Gotham and Haug, 2018

What about Phrase Strucure?

State of the Art Dependency Parsers

English PTB (Anderson and Gómez-Rodríguez, 2020)

	Parser	UAS	LAS	Sent/sec CPU
	HPSG (Zhou and Zhao, 2019)	96.09	94.68	
hq	BIST-Graph (Kiperwasser and Goldberg, 2016)	93.10	91.00	80
gra	Biaffine (Dozat and Manning, 2017)	95.74	94.08	~22
	Biaffine (Zhang, 2020)	95.74	94.07	57
	Pointer-TD (Ma et al., 2018)	95.87	94.19	10
ы	Pointer-LR (Fernández-González and Gómez-Rodríguez, 2019)	96.04	94.43	23
transitio	UUParser (de Lhoneux et al., 2017)	94.63	92.77	42
	BIST-Transition (Kiperwasser and Goldberg, 2016)	93.90	91.90	76
	CM (Chen and Manning 2014)	91.80	89.60	654

(Linear Neural Parsing and Hybrid Enhancement for Enhanced Universal Dependencies, Attardi et al, IWPT 2020)

Can we apply this trick more widely?

Spanish Ancora corpus

the boy eats a red apple

Chiruzzo and Wonserver, 2020, Statistical Deep Parsing for Spanish

Can we apply this trick more widely?

Spanish Ancora corpus

the boy eats a red apple

Chiruzzo and Wonserver, 2020,Statistical Deep Parsing for Spanish

• 158 treebanks, 100 treebanks are converted from non-UD data:

Relations | annotated manually in non-UD style, automatically converted to UD Introduction

SOTA in syntactic parsing

Recently, neural parsers without using any grammar rules significantly outperform conventional statistical grammarbased ones for the reason that neural networks, especially recurrent models (e.g, Bi-LSTM), are adept in capturing long range contextual information (anonymous, under review)

	System	LAS
Early days	Alpino, van Noord 2007	84.31
(2017)	ParseySaurus, Alberti et al 2017	80.53
	Parsey's Cousins, Andor et al 2016	78.08
	Easy-first, Kiperwasser 2016	77.16
CONLL 2017	Stanford	87.71
(NNs catch up)	IMS (Stuttgart)	86.86
	HIT-SCIR (Harbin)	86.85
	NAIST SATO (Nara)	85.03

Is there a need for formal grammar in the age of BERT?

- Statistical models pre-trained on huge amounts of raw text and fine-tuned on modest amounts of annotated data perform at amazing levels, outperforming (statistical) rule-based approaches
- So where does that leave theories such as HPSG?

Is there a need for formal grammar in the age of BERT?

- Statistical models pre-trained on huge amounts of raw text and fine-tuned on modest amounts of annotated data perform at amazing levels, outperforming (statistical) rule-based approaches
- So where does that leave theories such as HPSG?

Hypothesis 1

• Treebank annotation is shallow and misses many features essential for full interpretation. Richer representations will require more linguistic guidance

Is there a need for formal grammar in the age of BERT?

- Statistical models pre-trained on huge amounts of raw text and fine-tuned on modest amounts of annotated data perform at amazing levels, outperforming (statistical) rule-based approaches
- So where does that leave theories such as HPSG?

Hypothesis 1

• Treebank annotation is shallow and misses many features essential for full interpretation. Richer representations will require more linguistic guidance

Hypothesis 2

• Linguistic theory provides constraints & generalisations that can improve accuracy of neural models

Enhanced Universal Dependencies

Universal Dependencies in a nutshell

Dependency Annotation

- Single annotation scheme for all languages
 - uniform inventory of POS, features and depedency labels
- Maximize cross-lingual consistency
 - Primacy of content words over function words

Dependency Annotation

- Single annotation scheme for all languages
 - uniform inventory of POS, features and depedency labels
- Maximize cross-lingual consistency
 - Primacy of content words over function words

Formal properties

- Terminals annotated with lemma, POS, morphosyntactic features
- Labeled head-dependent edges between terminals
- Annotation is an (unordered) tree with single root
 - Non-projective edges for crossing and long distance dependencies
 - No empty nodes

Zeman, Nivre et al, UD treebanks v1.0 - v2.6

Enhanced Universal Dependencies

Motivation

- Universal Dependencies is an easy-to-use annotation standard for many languages
- But formal constraints make it hard to capture some phenomena correctly (i.e. control, coordination, ellipsis)
- and do not fully support downstream applications (e.g. Question Answering, Information Extraction)

Enhanced Universal Dependencies

Motivation

- Universal Dependencies is an easy-to-use annotation standard for many languages
- But formal constraints make it hard to capture some phenomena correctly (i.e. control, coordination, ellipsis)
- and do not fully support downstream applications (e.g. Question Answering, Information Extraction)

Enhanced Universal Dependencies

- Annotation is a (cyclic) graph
- Terminals can be dependents of multiple heads
- 'Empty' nodes are allowed

http://universaldependencies.org/u/overview/
enhanced-syntax.html

Coordination Dependency relations are propagated for (some) dependents and predicates

Control and raising The external subject of *xcomp* is explicitly marked

- Gapping and Ellipsis Empty tokens in the input represent missing predicates
- **Relative clauses** Antecedent noun is a dependent of some node in the relative clause (thus introducing a cycle)

Case information Selected dependents become *rel:case* where *case* is the lemma of a case/marker/cc dependent and/or the case feature of the dependent

Coordination

Basic UD

Coordination

Basic UD

Enhanced UD

Relatives

Relatives

Gapping

Basic UD conj conj obj orphan orphan nsubj nummod punct cc has and Kim Sue 5 Pat 6 3 euros ,

Gapping

Basic UD conj conj obj nsubj orphan nummod punct orphan CC Sue has 5 Pat and Kim 6 3 euros ,

Enhanced UD

Motivation Are parsers able to produce enhanced UD annotation graphs automatically?

- Data 17 languages (28 treebanks) in UD v2.5 contain Enhanced UD
- **Evaluation** Labeled attachment F1-score over the set of Enhanced dependency triples (ELAS)
- Approaches Output basic UD and convert to EUD
 - Compile all of EUD into a basic UD-compatible format
 - Parse into EUD directly (graph-based or transition-based)

Results of IWPT Shared Task

Team	LAS	ELAS
baseline	100.00	79.86
TurkuNLP	87.31	84.50
Orange	86.79	82.60
Emory NLP	86.14	79.84
FASTPARSE	77.57	74.04
UNIPI	80.74	72.76
ShanghaiTech	0.99	71.74
CLASP	82.66	67.85
ADAPT	84.09	67.23
Køpsala	75.41	62.91

- 'baseline' : copy gold standard UD into EUD
- Drop in going from UD to EUD is often less than 5%

• Automatic parsing into Enhanced UD is feasible

- Automatic parsing into Enhanced UD is feasible
- Enhanced UD is able to capture most of the information that is present in formal grammar models (HPSG, LFG)

- Automatic parsing into Enhanced UD is feasible
- Enhanced UD is able to capture most of the information that is present in formal grammar models (HPSG, LFG)
- Slightly different formats are possible as well:
 - Surface-Syntactic UD (Gerdes et al, 2017, 2019): capture (phrasal) distributional generalisations (function words are heads) repartitioning dependency relations, surface vs deep syntax

- Automatic parsing into Enhanced UD is feasible
- Enhanced UD is able to capture most of the information that is present in formal grammar models (HPSG, LFG)
- Slightly different formats are possible as well:
 - Surface-Syntactic UD (Gerdes et al, 2017, 2019): capture (phrasal) distributional generalisations (function words are heads) repartitioning dependency relations, surface vs deep syntax
- Semantic Interpretation is underdeveloped area:
 - Reddy, 2017, Gotham and Haug, 2018

Phrase Structure as a guide

Dependency Penn Treebank SOTA

	English PTB (An	derson and Gó	mez-Rodrígu	iez, 2020)
	Parser	UAS	LAS	Sent/sec CPU
h	BIST-Graph (Kiperwasser and Goldberg, 2016)	93.10	91.00	80
Bla	Biaffine (Dozat and Manning, 2017)	95.74	94.08	~22
	Biaffine (Zhang, 2020)	95.74	94.07	57
transition	Pointer-TD (Ma et al., 2018)	95.87	94.19	10
	Pointer-LR (Fernández-González and Gómez-Rodríguez, 2019)	96.04	94.43	23
	UUParser (de Lhoneux et al., 2017)	94.63	92.77	42
	BIST-Transition (Kiperwasser and Goldberg, 2016)	93.90	91.90	76
	CM (Chen and Manning 2014)	91.80	89.60	654

(Linear Neural Parsing and Hybrid Enhancement for Enhanced Universal Dependencies, Attardi et al, IWPT 2020)

Canto of the Aut Demonder of Demons

The power of pre-trained Language Models

- LMs trained on large corpora already capture quite a bit a syntactic structure
- Therefore, limited amount of task-specific training data (i.e. treebank) already gives high accuracy

The power of pre-trained Language Models

- LMs trained on large corpora already capture quite a bit a syntactic structure
- Therefore, limited amount of task-specific training data (i.e. treebank) already gives high accuracy

Probing: Making syntactic predictions

- Linzen et al, 2016, Predict subject-verb agreement
 - The keys to the cabinet are/*is on the table
 - Alluvial **soils** carried in the floodwaters **add/*adds** nutrients to the floodplains.
 - Yet the **ratio** of men who survive to the women and children who survive **is/*are** not clear in this story.
- Also for relative clause attachment, negative polarity items, reflexives, relative pronouns (Dutch)

Why are BERT models so successful?

Probing for syntactic structure directly

• Hewitt and Manning, 2019: It is possible to learn a transformation of the vectorspace that predicts tree distance between words, as well as tree-depth of a word (i.e. no fine-tuning on task data)

Figure 3: Parse tree depth according to the gold tree (black, circle) and the norm probes (squared) on ELMO1 (red, triangle) and BERTLARGE16 (blue, square).

What about Phrase Strucure?

State of the Art Dependency Parsers

English PTB (Anderson and Gómez-Rodríguez, 2020)

	Parser		LAS	Sent/sec CPU
hq	HPSG (Zhou and Zhao, 2019)	96.09	94.68	
	BIST-Graph (Kiperwasser and Goldberg, 2016)	93.10	91.00	80
gra	Biaffine (Dozat and Manning, 2017)	95.74	94.08	~22
	Biaffine (Zhang, 2020)	95.74	94.07	57
transition	Pointer-TD (Ma et al., 2018)	95.87	94.19	10
	Pointer-LR (Fernández-González and Gómez-Rodríguez, 2019)	96.04	94.43	23
	UUParser (de Lhoneux et al., 2017)	94.63	92.77	42
	BIST-Transition (Kiperwasser and Goldberg, 2016)	93.90	91.90	76
	CM (Chen and Manning 2014)	91.80	89.60	654

(Linear Neural Parsing and Hybrid Enhancement for Enhanced Universal Dependencies, Attardi et al, IWPT 2020)

Merging Phrase Structure and Dependencies

• Zhou and Zhao, 2019, Head-Driven Phrase Structure Grammar Parsing on Penn Treebank

Merging Phrase Structure and Dependencies

- Constituent parsing in the neural era:
 - top down prediction of splits between spans
- ...our HPSG parsing model is more effective than learning constituent or dependency parsing separately

Merging Phrase Structure and Dependencies

		EN F1	CH F1	
Constituency parsing	Charniak 2016 Fried & Klein 2018 Kitaev et al 2018 Zhao & Zhou 2019	93.8 95.77 96.33	87.0 91.7 92.1	5 8 4
-		E	EN AS	CH LAS
Dependency parsing	Dozat and Manning 2016		4.08	88.23
	Zhao & Zhou 2019 Mrini et al 2020	ç ç	5.72 6.26	89.15 89.26
Mrini et al, 2020 Rethi neural parsing	nking self-attention:	towards	interp	oretability in

Can we apply this trick for Dutch?

The Dutch-Italian relationships are good.

Can we apply this trick more widely?

Spanish Ancora corpus

the boy eats a red apple

Chiruzzo and Wonserver, 2020, Statistical Deep Parsing for Spanish

Can we apply this trick more widely?

Spanish Ancora corpus

the boy eats a red apple

Chiruzzo and Wonserver, 2020,Statistical Deep Parsing for Spanish

• 158 treebanks, 100 treebanks are converted from non-UD data:

Relations | annotated manually in non-UD style, automatically converted to UD

(Enhanced) Universal Dependencies and Phrase Structure

- Enhanced UD and related formats capture substantial portion of information expressed by formal syntactic theories
- HPSG-inspired combinations of dependency annotation and phrase structure contribute to accurate parsing

Questions?

Tuesday, August, 18, 15:25-15:45 (Paris/Berlin/Amsterdam time)