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1 Introduction

A major design decision in the development of HPSG
parsers is the internal representation of typed fea-
ture structures. Two approaches have been advanced
relative to heap architectures that support unifica-
tion: one by Carpenter and Qu Carpenter and Qu
(1995), variations of which were adopted by both LiL-
FeS (Makino et al., 1998) and PET (Callmeier, 2000),
in which feature structure representations grow as
the type becomes more specific and more features be-
come appropriate; the other by ALE (Penn, 1999b),
in which space is reserved in advance on the heap for
future appropriate features, and the minimal amount
of space necessary is calculated at compile-time. No
one except Callmeier (2000) conducted any experi-
ments to corroborate their choice of representation,
and Callmeier (2000) only briefly summarizes his find-
ings, which were based on experimentation with one
grammar (the English Resource Grammar, ERG).

What is at stake is not a time-space tradeoff. Ei-
ther approach consumes more or less of both time
and space than the other as a function of the type
hierarchy’s shape, feature introductions, and the em-
pirical frequency distribution of feature structure in-
stances over types. While empirical frequency dis-
tributions are only forthcoming from real large-scale
grammars, of which there are precious few in HPSG
that have not been directly or indirectly adapted from
the ERG, a more controlled comparison that varies
only some algebraic properties of abstract type hi-
erarchies and feature introduction is also illuminat-
ing, since it provides prior guidance on how the type
hierarchies of large-scale grammars should look for
the sake of efficiency. Naturally, there are linguistic
grounds for preferring one type system over another
as well, but there can be cases in which the data,
even when combined with our theoretical viewpoint,
do under-determine the combination of features and
subtyping used in our analyses. In these cases, ef-
ficiency is the natural criterion to base our decision
upon.

This paper presents such a comparison, describ-
ing the platform on which both memory manage-
ment strategies were implemented, called SPAM, as
well as the results obtained from this experiment.

SPAMis a modified reimplementation of the Warren
Abstract Machine (WAM, Warren, 1983) that takes
into account the inclusionally polymorphic aspects of
processing typed feature structures. It has a very
rigid Prolog-like description language, called Signa-
ture Prolog, although it lacks much of ALE’s func-
tionality. As a result, at the grammar specification
level, it does not look like TDL, ALE or any other
grammar design system, nor was it designed as an
alternative to these. It simply provides us with suf-
ficiently low-level access to memory management to
conduct this experiment. A commercial implementa-
tion of Lisp or Prolog would not. PET imposes ad-
ditional restrictions regarding static typability that
limit the range of type systems that we can compare.

The conclusion apparent from our experiment, in
brief, is that the choice of memory management strat-
egy depends principally on: (1) the degree of static
typability (Carpenter, 1992), 1 and (2) the amount
of trailing required by the parsing algorithm or pro-
gram. 2 ALE’s “fixed” method performs better when
the degree in (1) is high and the degree in (2) is
low. Carpenter and Qu’s “variable” approach per-
forms better when the degree in (1) is low and the
degree in (2) is high. The constant terms arising from
our own implementation and machine architecture
preclude our setting statistically significant thresh-
olds beyond which one approach overtakes the other,
but these trends are robust in relative terms, i.e., as a
type system becomes less statically typable and pro-
cessing requires more trailing, Carpenter and Qu’s
method becomes more preferable.

1The definition of static typability in Carpenter (1992) does
not come with a notion of degree or gradation, but by this we
simply mean to measure the percentage of type unifications
that do not require dynamic type inference. The classical sense
of static typability is obtained when this percentage converges
to 100% with increasingly large samples from a uniform distri-
bution of unifications over pairs of types in the hierarchy.

2Trailing records the changes made to feature structures on
the heap so that they can be restored during backtracking.
Even if the description language lacks an explicit disjunction
operator, as in PET or the LKB, all-paths parsing algorithms
implicitly backtrack by considering alternative parses of the
same substrings. Not all backtracks involve trailing, however.
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2 Architecture

SPAM adopts the general scheme of compiling pro-
grams into a sequence of abstract machine instruc-
tions from the WAM. Our modifications to the WAM
basically affect the way arguments to functors are
processed: functors are interpreted as types and their
arguments as feature values. Whereas this necessi-
tates creating an enirely new unification mechanism,
program resolution and parsing are by and large iden-
tical to what a Prolog compiler would use.

The most signficant syntactic modification to the
input language is that the user must place a type
system specification in front of the parser/program.
A type system, or signature, comprises a type hier-
archy, a finite set of features and an appropriateness
specification (see Carpenter, 1992). The type hierar-
chy is compiled into a finite bounded complete partial
order, as is standard in many HPSG processing sys-
tems. Apart from this, Signature Prolog (programs
and queries) syntactically look very much like Pro-
log. SPAM’s memory layout includes all the memory
areas employed by a classical WAM, the most im-
portant of these being the heap, an addressable data
structure consisting of tagged cells, where unification
of feature structures takes place.

This test platform can accommodate two approaches,
as described above: a fixed approach and a variable
approach. In the following, the machine and all its
components will be prefixed with V- or F- according
to the approach. Each approach includes a respec-
tive machine (F-SPAM vs. V-SPAM), its respec-
tive machine language, and the respective compiler
that compiles Signature Prolog into the respective
machine language.

In SPAM, a node (substructure) of a feature struc-
ture together with the edges (features, if any) that
depart from that node is represented by a frame on
the heap. The nodes pointed to by these edges are
also included in the frame if they do not themselves
have edges departing from them. The representation
of a feature structure on the heap is a collection of
such frames.

A frame consists of a root cell and a contiguous
block of cells adjacent to the root cell, that are also
referred to as slots. The root cell contains type infor-
mation and serves as a location in memory to which
other typed feature structures can point — this loca-
tion is the unique representative of this feature struc-
ture’s identity. In V-SPAM, the number of allocated
slots is identical to the arity of the node residing in it,
i.e., the number of features appropriate to its type.
In F-SPAM, the number of allocated slots might be
greater than in the former, i.e. not every slot of the
frame might be occupied. The slots that are not occu-
pied by a feature structure remain unused until they
are needed later, if ever.

Feature structures are polymorphic data structures

in that the type of a feature structure as well as the
number of its features, and also the appropriate types
of those features’ values might change during unifica-
tion. Thus, in V-SPAM, if a node’s type is promoted
to a more specific type with greater arity, the corre-
sponding to it “outgrows” its frame, since it can ac-
quire one or more new features. This situation will be
referred to as a growth-situation. It is a source of both
time and space complexity. In a growth-situation, all
that can be done in V-SPAM is to assign new space
(viz. a larger frame) to the resulting larger frame,
and to relate the larger frame to the original frame
by pointers. To determine how the features of the
original frame(s) and the larger frame match up, V-
SPAM needs to refer to a types x types table (viz. the
V-FRAME UAbelow).

The fixed approach is characterized by the frame
size being fixed – more precisely, fixed per module
(see below). Furthermore, every feature has a fixed
position within every frame. Thus, in many situa-
tions, no run-time table lookup is necessary (see sec-
tion 3.1) to find out how features of unificands match
up. At the end of the computation it might be the
case that not every slot allocated to a frame is occu-
pied. However, the size of a frame remains constant,
and no redirection from any new frame to an original
frame is necessary. To ease the problem of poten-
tially very large frame sizes (depending on the num-
ber of features to be accomodated), F-SPAM adopts
both the modularization and graph coloring optimiza-
tions discussed in Penn (1999b). A situation in which
more unused than used slots are carried around will
be referred to as a drag-situation. This is the alter-
native source of time and space complexity for this
approach. Neither of the approaches constitutes a
perfect solution, but, depending on the application
and the signature, one approach is more suitable than
the other.

2.1 Static areas

All areas of the WAM’s memory architecture are adopted,
some with minor modifications. SPAM also has ad-
ditional data areas that matter for the experiment in
section 4. These are the signature area and the as-
sert area, for dynamic assertion of fact clauses such
as chart edges. SPAM’s memory areas fall into static
and dynamic areas. The static areas are the signa-
ture area and the code area. At compile-time the
signature is compiled into the signature area, and the
program/parser is compiled into abstract machine in-
structions that are stored in the code area.

In the signature area, all kinds of information
about types as well as of unification of types and of
feature structures is stored. The relevant components
of the signature area we’ll need in section 4 are the
TYPE UA and the FRAME UA. The TYPE UA (type uni-
fication area) is a types x types table (roughly the
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same table for both F-SPAM and V-SPAM) storing
for each pair of types their least upper bound as well
as the relation between them: proper join, or one of
two subtype relationships.

The FRAME UA (frame unification area) is a table
used for unification involving at least one complex
feature structure. The V-FRAME UA is a types x types
table containing for each pair of unifying types t1 and
t2 a small table fc (feature unification code), which
describes, for each feature in the unification result, its
resulting value as a function of the slots in the argu-
ments of types t1 and t2. The encoded instructions
consist of an origin, which is either t1, t2, both or
neither, referred to as “orig” in Figure 2, and the ap-
propriate type of the resulting value. The F-FRAME UA

contains for each type t a slot restriction (sr) deter-
mining the position and the appropriate type of every
feature in a frame of type t.

3 Run-time System

The dynamic areas that are relevant for section 4 are
the heap, the stack, the trail and the assert area.
They are involved at run-time only. This is when
space for them is allocated.

The heap consists of tagged data cells with the
tags: STR (the tag of the root cell of a feature struc-
ture), VAR (the tag of a type or an unbound variable)
and PTR (the tag of a cell that points to a cell tagged
VAR or STR). In F-SPAM, unused slots are tagged
EMPTY. H is a global register containing the next
available address on the heap.

A failure of unification leads to backtracking in
case there are alternatives to consider in program
resolution. The state of computation at a program
procedure call which offers alternatives is referred to
as a choice point. The information wherefrom such
an original state can be restored is pushed onto a
stack (more precisely, onto an OR-stack, see Aı̈t-Kaci
(1999)).

The trail’s purpose is — in case a choice point
was pushed – to save a heap cell’s contents before it
is changed. The contents of both VAR and STR cells
are potentially bound and trailed. A global register
HB is set to contain the value of H at the time of
the latest choice point. Only bindings of cells whose
addresses are less than HB need to be recorded in the
trail. Upon reconsidering a choice, the trail needs to
be unwound to reconstruct the original state.

3.1 Unification

The notion of adding a unificand to another will be
used below to indicate unification, with a certain di-
rection or bias in the order of its arguments. One
unificand always resides on the heap and will be re-
ferred to as the add target ; the other unificand may

reside in the code area, on the heap, or in the signa-
ture area, and will be referred to as the addend. We
will use the term, “unification” whenever we want to
abstract away from this directionality. The tests pre-
sented in section 4 focus on the case where both the
addend and the add target reside on the heap. This
situation will also be referred to as frame unification.

The signature depicted in Figure 1 is a non-statically
typable signature, due to the fact that the value re-
striction for F1 on type c is d4 (and not d3) which
is strictly more specific than would be required to
maintain right monotonicity (see Carpenter, 1992),
given the value restrictions that F1 has at supertypes
a and b. To find the value restriction for F1 on type
c, dynamic (or run-time) type inferencing is needed.
To obtain a totally well-typed result when unifying
feature structures of types a and b, the feature F4

(which is introduced by c) needs to be filled in (see
Carpenter, 1992). Whereas a V-FRAME UA-lookup is
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Figure 1: A non-statically typable signature

always needed to unify complex feature structures of
differing types, an F-FRAME UA-lookup is needed only
in the case of dynamic type inference and when filling
in missing features becomes necessary.

When unifying (see heap contents in Figure 3)
two feature structures of root types d1 and d2, V-
SPAM looks up the fc (see Figure 2) for the pair
〈d1, d2〉 which guides the unification process. Here,
the type relation t3 GROWS indicates that d1 and d2

unify to a new type with greater arity, viz., a growth
situation. Then the origins follow: UNIFY indicates
that both unificands’ values (of feature F5) must be
unified; COPY t1 indicates, that the unification result
must contain a pointer to F6’s value (only d1 bears
F6); similarly COPY t2 indicates that the unification
result must contain a pointer to F7’s value.

Since neither filling in missing features nor dy-
namic type inference is needed, while stepping through
the unficands’ frames on the heap, F-SPAM (see heap
content in Figure 4) needs only to compare the cor-
responding slots of the two frames, where the slot
patterns of the unificands can be seen to correspond
to the origins in Figure 2; i.e. NON-EMPTY – NON-
EMPTY (at addresses 3002 and 3006) corresponds to
UNIFY, NON-EMPTY – EMPTY (at 3003 and 3007)
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to COPY t1 and EMPTY – NON-EMPTY (at 3004
and 3008) to COPY t2. In both Figure 3 and 4, the
unification result resides in the respective frames of
type d3.

rel/origin lub/restr
0 t3 GROWS c

1 UNIFY e3

2 COPY t1 e1

3 COPY t2 e2

Figure 2: fc for pair of types <d1,d2>

Figure 5 depicts the fc for the pair 〈a, b〉 in V-
SPAM and the sr for type c in F-SPAM, where a and
b involve both dynamic type inference and the filling
of feature F4. The suffix ” D” indicates the neces-
sity for dynamic type inference; CREATE indicates
that a feature must be filled in. When unifying fea-
ture structures of types a and b, V-SPAM makes one
V-FRAME UA-lookup, whereas F-SPAM needs an F-
TYPE UA-lookup to determine the resulting type and
type relation and then an F-FRAME UA-lookup to ob-
tain the sr.

An fc needs more space than an sr but is much
more precise: for each feature, it specifies whether
it is introduced by the unification result and whether
dynamic type inference is needed, along with the value
restriction of the respective feature appropriate to
the unification result. Each sr entry says neither
which features’ values need dynamic type inference
nor which features are introduced by the unification
result — only whether dynamic inference is necessary
somewhere.

4 Controlled Experiment

The experiments were conducted in such a way that
a minimal application accessing one small fragment
of the signature was repeated many times, as we are
particularly interested in testing growth- and drag-
situations. Therefore a failure-driven loop written in
Signature Prolog serves as the testing environment,
executing the unification of two feature structures a
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3003 VAR e1
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3001 PTR 3007
3002 PTR 3008
3003 VAR e1

3004 PTR 3007
3005 PTR 3008
3006 VAR e2

3007 STR d3
3008 VAR e3
3009 PTR 3003
3010 PTR 3006

Figure 3: Heap before (to the left) and after (to
the right) unification in V-SPAM

3001 STR d1
3002 VAR e1
3003 VAR e1
3004 EMPTY

3005 STR d2
3006 VAR e2
3007 EMPTY
3008 VAR e2

3001 PTR 3005
3002 PTR 3006
3003 PTR 3007
3004 EMPTY

3005 STR d3
3006 VAR e3
3007 VAR e1
3008 VAR e2

Figure 4: Heap before (to the left) and after (to
the right) unification in F-SPAM

rel/origin lub/restr
0 t3 GROWS c

1 UNIFY D d4

2 COPY t1 d1

3 COPY t2 D d5

4 CREATE bot

pos restr
0 1 d4

1 2 d1

2 3 d5

4 4 bot

Figure 5: fc for pair of types 〈a, b〉 and sr for
type c

large number of times while guaranteeing a bound on
heap memory consumption. The initial input is re-
membered by asserting it to the assert area, to enable
repetition of the same unification whilst avoiding con-
tinuation with the instantiated query after the first
execution of the loop body. This looks as shown in
Figure 6.

add(List_1):-
clause(edge(1, 2, List_2)),
rep_add__2(List_1, List_2),

1=2. %fail
add(_).

rep_add__2([],_).
rep_add__2(_,[]).

rep_add__2([T1|Rest1],[T2|Rest2]):-
T1 = T2, %unification

assert(edge(2, 3, [T1])),
rep_add__2(Rest1,Rest2).

Figure 6: Loop body

To put frame unification to the test, the query
that the user is supposed to enter should be some-
thing like the one shown in Figure 7. where “=” in
add/1 invokes adding the addend (the argument of
the second list) to the add target (the argument of
the first list).

add/1 sets an (artificial) choice point. F-SPAM
runs the risk of trailing, since cells are more likely
to reside underneath HB than in V-SPAM. Tests were
conducted both in the presence of the second add/1

clause, and in its absence.
The tests were conducted with many features and

uniform feature values. The has the effect of magnify-
ing the number of computations so that the difference
can be precisely measured, and at the same time con-
trolling the experiment for other variables that could
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?-n_times(20000, [dt1(at1,at1,at1,at1,at1)],
[dt2(at2,at2,at2,at2,at2)]).

Figure 7: Example query

kind of origin used without 2nd add with 2nd add

UNIFY pro-F (90.3%) pro-V (96.67%)
COPY t2 pro-F (80.95%) same
COPY t1 pro-F (94%) same
UNIFY D pro-V (94%) pro-V (86.02%)
COPY t1 D same pro-V (92%)
COPY t2 D pro-V (94%) pro-V (90%)
CREATE pro-V (98%) pro-V (76%)

Figure 8: Basic summary of results

confound the single effect we are looking for. The
relative performance of the two approaches depends
both on the application and the signature. Both
the attributes of the signature and the attributes of
the application varied in the tests. The application-
inherent attributes that should be mentioned here
are: presence vs. absence of the choice point, of
growth situations and of drag situations. The rele-
vant signature-inherent attributes were distribution
of origins (see Figure 8) and degree of statically ty-
pability.

V-SPAM’s fc’s can be seen as the interface be-
tween the application and the signature, in that the
fc is determined by the signature fragment that is
used in the minimal application. There are no fc’s
in F-SPAM, but since the origins correspond to slot
patterns in F-SPAM, we can describe the experiment
in terms of fc’s in both approaches.

Figure 8 breaks down the combinations of fc and
choice point presence, i.e., presence of the second add

clause, during frame unification. The first column
shows the main kind of origin used in the respec-
tive fc to characterize the fragment of the signature
area used by the minimal application. pro-F means
that the fixed approach scored better, and pro-V,
that the variable approach scored better for the re-
spective distribution of origins. Percentages are of
the faster time over the slower. Boldfacing means
that the result is statistically significant. The longest
of these (UNIFY D with choice points in F-SPAM)
took 157.56 seconds. The shortest (COPY t2 without
choice points in F-SPAM) took 31.2 seconds. Again,
“ D” indicates dynamic type inference.

What the origins mean in the variable approach, is
detailed in section 3.1. In F-SPAM, COPY t2 means
that the respective feature value of the add target is
left untouched; COPY t1 means that the respective
feature value resides in the addend and thus must be
related to the add target via a PTR cell placed in
the add target; and UNIFY is interpreted the same
in both approaches. If very many features combine
but their values are not changed, the fixed approach

performs better.
As discussed in 3.1, dynamic type inference and

filling features (CREATE and suffix “ D”) slow down
the fixed approach.

After having passed a choice point, more changes
to structure under HB slow the fixed approach down.
This effect is certainly a result of the data structure
used for trailing. Upon backtracking, the respective
slot must be reset to EMPTY, which slows down the
fixed approach. This is related to drag situations.
If the empty slots are at the bottom of the frame,
in the absence of the choice point, they do not have
much negative influence on performance, but the op-
timal graph coloring does not always allow for this
possibility.

5 Conclusion

Whether variable or fixed frame encodings of features
in typed feature structures are more efficient depends
on whether (1) the type signature in question is stat-
ically typable and (2) the logic program in question
requires trailing. On a sliding scale from ”(1) but
not (2)” to ”(2) but not (1)” (the slide coming from
the presence of more or less trailing and the amount
of dynamic type inference required, if any), our pref-
erence shifts from fixed frames to variable frames,
respectively.
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