
Automatic Construction of Korean Verbal Type Hierarchy using Treebank

Sanghoun Song and Jae-Woong Choe
Korea University

The lexical information of verbal lexemes, such as verbs and adjectives, plays an important role in

syntactic parsing, because the structure of a sentence mainly hinges on the type of verbal lexemes.

The question we address in this research is how to acquire the ‘argument structure’ (henceforth

ARG-ST) of verbal lexemes in Korean. It is well known that manual build-up of type hierarchy

usually cost too much time and resources, so an alternative method, namely automatic collection of

relevant information is much more preferred. This paper proposes a procedure to automatically

collect ARG-ST of Korean verbal lexemes from a Korean Treebank. Specifically, the system we

develop in this paper first extracts lexical information of ARG-ST of verbal lexemes from a 0.8

million sized Korean Treebank in an unsupervised way, checks the hierarchical relationship among

them, and builds up the type hierarchy automatically. The result is written in an HPSG-style

annotation, thus making it possible to readily implement the result in an HPSG-based parser for

Korean. Finally, the result is evaluated with reference to two Korean dictionaries and also with

respect to a manually constructed type hierarchy in Kim et al. (2006).

1. Problem One of the key issues in writing a comprehensive grammar of a natural language in

the HPSG style is how to build up type hierarchies on a large scale. In the case of verbal lexemes in

Korean, ARG-ST or case frame plays a significant role in the construction of verbal type hierarchies.

One way to collect the ARG-ST information of Korean verbals in a comprehensive way would be to

consult the dictionary. For example, the Yonsei Korean Dictionary lists the following three types

of construction for the adjective elyep- ‘difficult’, a typical ‘tough’ class verb in Korean.

(1) a. enehak-i elyep-ta.
 linguistics-NM difficult-DC

 ‘Linguistics is difficult.’
b. nay-ka kongpwu-ka elyep-ta.

 I-NM study-NM difficult-DC

 ‘It is difficult for me to study.’
c. enehak-ul kongpwu-ha-ki-ka elyep-ta.

 linguistics-AC study-LV-NOM-NM difficult-DC

 ‘It is difficult to study linguistics.’

The examples in (1) shows that elyep- ‘difficult’ can be divided into several types according to its

ARG-ST; <NP(nom)>, <NP(nom), NP(nom)>, and <S(nom)>, which correspond to (1a-c)

respectively. An alternative way to collect ARG-ST information on a large scale is to make use of

some available Treebanks. Compared to the dictionary based approach, the Treebank approach

has at least two obvious advantages. The first is that the Treebank approach would provide the

frequency for each ARG-ST as well, which would become crucial for building a stochastic parser.

Another advantage of the Treebank approach is that we can minimize the inconsistency or some

possible errors in the compilation process of the dictionary. For example, it is up to the judgment

of the compiler(s) that s/he selected the three constructions given in (1) for elyep-; other compiler(s)

could have added another to (1), or even excluded one from (1). In fact, a different dictionary, the

Sejong Electronic Dictionary, lists six different case frames for the same adjective, and it is almost

impossible to pinpoint the source of the difference.

2. Data There are two Korean Treebanks currently available, the Sejong Korean Treebank

(henceforth SKT) and the Penn Korean Treebank (henceforth PKT). The major characteristics of

the two can be compared as follows: (i) SKT contains approximately eight hundreds of thousands of

words consists of various genres, while PKT includes about two hundreds of thousands of words is

composed of only military manuals or newspaper articles. (ii) The empty categories are specified

in PKT, while there is no empty category in SKT. (iii) Oblique cases can be tagged as

complements in PKT, whereas in SKT they are excluded from being possible candidates for

complements. Between the two, we chose SKT for its size and the balance in its composition.

Since SKT do not contain empty categories, it should be noted that the result of this study would

likewise be more ‘surface-oriented’.

An important problem one faces in dealing with the ARG-ST of the Korean language is the

difficulty of differentiating arguments from adjuncts. Korean, a pro-drop style language, allows

any element of the sentence be omitted, possibly except for the head. So there is no clear-cut

method of distinguishing arguments from adjuncts, as abundantly discussed in the literature (Chae

2000). The same problem crops up in SKT as well. Consider the following.

(2) a. Mia-ka yenphil-ul chayksang-eyta noh-ass-ta.
 Mia-NM pencil-AC desk-LOC put-PAST-DC

 ‘Mia put a pencil on the desk.’

b. Mia-ka yenphil-ul seylo-lo noh-ass-ta.

 Mia-NM pencil-AC length-DIR put-PAST-DC

 ‘Mia put a pencil lengthwise.’

According to the Yonsei Korean Dictionary, the ARG-ST of noh- ‘put’ is <NP(nom), NP(acc),

NP(loc)> or <NP(nom), NP(acc)>. Thus, note that chayksang-eyta ‘on the desk’ in (2a) is a

complement of noh, whereas seylo-lo ‘lengthwise’ is a mere adjunct according to the standard view.

However, both chayksang-eyta and seylo-lo are tagged as ‘NP_AJT’ in SKT. As a way to cope

with this problem, we took a practical, construction based approach in this study. We first took the

ARG-ST in its broadest sense, thus including every possible NPs, VPs, and Ss that are dependent on

a verbal. From the resulting set of ‘argument structure’ candidates, we selected only the

significant ones as ARG-ST of the verbal by introducing a simple statistical method. In a sense we

adopted a construction based method relying on the frequency of the relevant construction, namely,

the ‘argument structure’. Note that we do not distinguish arguments from adjuncts in its original

sense, nor we distinguish between oblique cases from grammatical cases. This again reflects our

surface-oriented and frequency-based approach.

In counting the frequency of ARG-ST, we excluded the verbs or adjectives in the so-called

relative clauses. In a relative clause, one of the arguments appears on the surface as the head noun,

but there is no way to retrieve its case or function information with respect to the verbal element in

the relative clause. Those cases comprise 7.5% of all verbal elements in SKT.

3. Implementation One of the most prominent distributional characteristics of CFG rules in

SKT is that the mother node depends upon the right daughter node almost invariably, which directly

reflects the fact that Korean belongs to head-final languages. Therefore, the search path to extract

arguments from a tree structure will be as in the following pictures.

(3)

(4)

VV / VA

AJT

postposition

(5)

(3) illustrates the main process to acquire arguments with grammatical cases, such as nominatives

or accusatives; if a node includes a verb ‘VV’ or an adjective ‘VA’, the node is the starting position

of searching. By traversing the left node of its ancestor nodes reflexively, relevant cases are

collected: if the left node can be the member of ARG-ST of the verbal lexeme, the node becomes an

element of candidate set of ARG-ST. Since information about the function, such as ‘SBJ’ or ‘OBJ’,

are annotated on each node in SKT in most cases, this process can be carried out with consistency.

(4) indicates how the candidate set of ARG-ST takes NPs with oblique cases as its element. If a

left node of an ancestor node of verbal lexeme is tagged as ‘AJT’, the node is the starting point.

Since oblique cases in Korean largely hinge on postpositions attached to NP just as oblique cases in

English hinge on prepositions, if the final right daughter node contains a postposition, the final node

also becomes an element of candidate set. Oblique cases in Korean are shown in (6), adapted from

Sohn (1999:213). On the basis of (6), some heuristic assumptions which substitute a postposition

with its representative form are applied as a way to deduce representative types of oblique cases

(6) dat ‘to’ (ey, eykey, hanthay…), loc ‘on, at, in’ (eyta, eytaka…), src ‘on, at, in’ (eyse,

eykeyse…), abl ‘from’ (pwuthe…), dir ‘towards’ (lo, ulo…), inst ‘with’ (lo, ulo…), cmt ‘with’
(wa, lang…), con ‘and, or’ (mye, na…), comp ‘than’ (pota), eqt ‘as, like’ (chelem…)

(5) is for troublesome cases which are due to peculiarities of Korean verbal system. In complex

predicates in Korean (e.g. ‘verb + auxiliary’), the ARG-ST of the sentence is determined by the

main verb (Sells 1998, Kim and Yang 2007, etc.). For example, in (7) where mek- ‘eat’ combines

with siph- ‘would like to’, both Mia and ppang ‘bread’ are analyzed as arguments of mek-.

(7) Mia-ka ppang-ul [mek-ko siph-ta].
Mia-NM bread-AC eat-COMP would like to-DC

‘Mia would like to have bread.’

In this case, the starting point of the search path is the parent node of the verbal lexeme, which is

marked as a dark circle in (5).

3.1 Algorithms In order to handle the cases presented so far, we have implemented a

computer program module, coded in the ANSI C++ programming language. There are two major

algorithms to extract the candidate set of ARG-ST from SKT; one is the ‘Parse Tree’ algorithm

pseudo-coded in (8), the other is the ‘Traverse’ algorithm to treat (3), (4), and (5).

(8) 1: parse_tree(n):

2: n→left = n→right = n→parent = NIL:
3: if n is not a terminal node:
4: n→right = pop()
5: n→left = pop()

6: if n→left is NIL:
7: n→left = n→right
8: n→right = NIL

9: n→left→parent = n→right→parent = n
10: push(n)

(9) 1: traverse(n):
2: if n is not NIL:
3: get_argst(n→parent)

4: traverse(n→left)
5: traverse(n→right)

1: get_argst(n):

2: if next(n) is AUX: …(5)

3: n = n→parent
4: while n is not NIL:

5: get_arg(n→left) …(3)
6: get_postposition(n→right) …(4)

7: n = n→parent

3.2 ARG-ST Sets of ARG-ST of verbal lexemes extracted so far need further process for two

reasons. One is that SKT does not discern between oblique NPs as arguments and those as

adjuncts. Hence, it is necessary to decide whether an oblique case is qualified for the element of

ARG-ST or not. The other is because there is no empty category in SKT; therefore, it is not clear

whether a surface ARG-ST is saturated with underlying arguments or not. The previous studies

that seek to acquire subcategorization frames from corpora have proposed various solutions to this

kind of puzzles. Among them, Sarkar and Zeman (2000), who concentrate on the filtering of

adjuncts from observed data, employ some stochastic techniques as a device to distinguish valid

ARG-STs from invalid ones. In line with their proposal, in order to obtain ARG-STs on the basis

of a single criterion, we also use a statistical device, in particular, t-score considering it is quite

simple to apply and suffices to our purpose. If a frequency of each ARG-ST of an entry is given, t-

score will be calculated as (10).

(10)

s

"xm
t

)(

−
=

m : the mean of frequencies, x : each frequency,

" : the number of ARG-STs, s : the standard deviation of frequencies

Then each t-score is compared with the cut-off value presented at 25% significance level in the t-

distribution table. If t-score is smaller than the cut-off, that means the ATG-ST is not meaningless;

therefore, it is regarded as one of the valid ARG-STs. We tested a couple of cut-off values and

settled with the given one for now as the most appropriate one based on our intuition. It could be

an arbitrary decision and obviously needs further research, but the way the cut-off value applies to

each verbal lexeme is fixed and consistent.

As an example of the selection process, let us take elyep- ‘difficult’. It had originally 28 ARG-

STs, as given in (11). On the base of t-score, however, only four ARG-STs are considered as

candidates for building up the type hierarchy.

(11) elyep/VA

<NP(nom), VP(nom)> 86

<NP(nom)> 51

<S(nom)> 11

<NP(nom), VP(nom), NP(dat)> 10

<NP(nom), NP(dir)> 7

<NP(nom), NP(dat)> 5

<NP(nom), VP(nom), NP(src)> 4

<NP(nom), NP(comp)> 3

...

(12) elyep/VA
<NP(nom), VP(nom)> 86

<NP(nom)> 51

<S(nom)> 11

<NP(nom), VP(nom), NP(dat)> 10

Let us compare (12) with (1). While (1a) and (1c) are included in (12), (1b), namely, <NP(nom),

NP(nom)>, is not. Importantly, the dictionary, though compiled on the basis of a large scale

corpus data, does not reflect the most frequent type <NP(nom), VP(nom)>.

3.3 The Type Hierarchy After the valid set of ARG-STs is acquired, our system draws the

type hierarchy of verbal lexemes automatically. There are six depths in our automatic-drawn type

hierarchy. The top node of the hierarchy is regular-v, which is divided into two subtypes at the

second depth; stative-v for adjectives and non-stative-v for verbs. Types in the third depth are

divided according to transitivity, and types in the fourth depth are divided according to whether the

ARG-ST of the lexeme can contain oblique cases. If an oblique case can appear in the ARG-ST, -

obl- is attached to the type name; otherwise, -bas- is attached. The fifth depth classifies types into

subtypes in conformity with the category of arguments; such as NP, VP, or S. Finally, the last

depth is related to the case of arguments, such as nom, acc, or dat.

To begin with, our system generate only three types; regular-v, stative-v, and non-stative-v.

With checking all verbal lexemes which appear ten or more times in SKT, the type hierarchy

automatically branches out whenever a new type comes out. For example, noh ‘put’ <NP(nom),

NP(acc), NP(loc)> which belongs to v-tr-obl-n_nom-n_acc-n_loc generates four types

hierarchically, if there has not been corresponding types yet; v-tr, v-tr-obl, v-tr-obl-n-n-n, and itself.

The whole type hierarchy that our system built up is sketched out below.

 Therefore, the result of this study consists of two parts. One is the whole type hierarchy of verbal

lexemes in Korean. The other is the set of lexical information of verbal lexemes, which includes

information about frequency. Both of them are written in a type definition language, as stated

before.

4. Evaluation The result includes 914 verbal entries (90 adjectives and 824 verbs). Since an

adjective or a verb can belong to two or more types, the total number of lexicons is 1,578. Each

ARG-ST has its own frequency, as well. On the other hand, there are 45 types in the resulting type

hierarchy. In order to evaluate these results, we make use of precision, recall, and F-measure

(Manning and Schütze 1999:268).

(13)

fptp

tp
precision

+
=

(14)

fntp

tp
recall

+
=

(15)

RP

F
1

)1(
1

1

αα −+

=

As a way to check how well our result fits with other known language resources, we compared

our ARG-STs with three available resources separately, the Yonsei Korean Dictionary (eval1), the

Sejong Korean Electronic Dictionary (eval2), and also a manually built type hierarchy proposed in

Kim et al. (2006) (eval3). After selecting at random one hundred entries from our list, we

observed the differences. If an ARG-ST of our results is compatible with that of the Yonsei

Korean Dictionary or the Sejong Korean Electronic Dictionary, tp (true positives) will increase. If

an ARG-ST of our results is missing that of the dictionary, fn (false negatives) will increase. In the

reversed cases, fp (false positives) will increase. Let us call this evaluation process eval1 and

eval2, respectively. The following table shows the comparison.

 eval1 eval2 eval3

precision 80.66% 79.01% 55.56%

recall 79.35% 71.50% 62.50%

Fα=0.5 80.00% 75.07% 58.82%

The values of eval1 and eval2 are fairly high, which are at the similar level reported in Sarkar and

Zeman (2000). On the other hand, the values of eval3 are relatively low. We have yet to sort out

where the major source of the difference lies.

5. Conclusion In this paper we have proposed a method of automatically building up a

type hierarchy for verbal lexemes based on parsed corpora. We introduced algorithms to collect

all the possible ARG-ST and its frequency for a given verbal lexeme, to select appropriate ARG-STs

from the candidate set, and finally to build a comprehensive type hierarchy for Korean verbal

lexemes. The type hierarchy we have reached in this study matches reasonably well with the

information provided in two of the available resources.

We have taken a very practical and surface-oriented approach in selecting ARG-STs that form the

basis of the type hierarchy, thus avoiding the difficult task of resolving the argument-adjunct

distinction problem in Korean. There is also certain flexibility in the selection process: for

example, the significance level we chose was at 25%, a very loose one, but if we choose the

significance level at a stricter level, say, 10%, or 5%, the result would be a much more simple type

hierarchy. On the other hand, if we choose a yet looser one, the resulting type hierarchy would be

a much more fine-grained and complex one.

References Chae, Hee-Rahk. 2000. Complements vs. Adjuncts (in Korean). Studies in Modern Grammar 19:69-85. −
Kim, Jong-Bok and Jaehyung Yang. 2007. On the Syntax and Semantics of the Bound Noun Constructions: with a Computational
Implementation. Paper presented at PACLIC 21, Seoul. − Kim, Jong-Bok et al. 2006. Building up Korean Verbal Hierarchy. Paper
presented at Conference of Korean Lexicology, Seoul. − Manning, Christopher D. and Hinrich Schütze (1999) Foundations of
Statistical "atural Language Processing. Cambridge: The MIT Press. − Sarkar, Anoop and Daniel Zeman. 2000. Automatic
Extraction of Subcategorization Frames for Czech. Paper presented at COLI"G-2000. − Sells, Peter. 1998. Structural Relationships
within Complex Predicates. Paper presented at The 11th meeting of the International Circle of Korean Linguists, Hawaii. − Sohn,
Ho-Min. 1999. The Korean Language. Cambridge: Cambridge University Press.

